cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371364 Expansion of (1/x) * Series_Reversion( x * (1-4*x)^2 / (1-3*x) ).

Original entry on oeis.org

1, 5, 49, 597, 8129, 118469, 1807665, 28512213, 461141761, 7606159365, 127454706609, 2163636679125, 37130370808257, 643099703566277, 11227141735655345, 197356077159062613, 3490230884900117505, 62054912214781757957, 1108568475427756051761
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2024

Keywords

Crossrefs

Programs

  • Maple
    A371364 := proc(n)
        add(3^(n-k)*binomial(2*n+k+1,k)*binomial(2*n,n-k),k=0..n) ;
        %/(n+1) ;
    end proc:
    seq(A371364(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-4*x)^2/(1-3*x))/x)
    
  • PARI
    a(n) = sum(k=0, n, 3^(n-k)*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 3^(n-k) * binomial(2*n+k+1,k) * binomial(2*n,n-k).
D-finite with recurrence (n+1)*(2*n+1)*a(n) +3*(-6*n^2-9*n+2)*a(n-1) -27*(7*n-9)*(2*n-3)*a(n-2) -243*(n-2)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Apr 22 2024