A371395 Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).
1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0
Examples
Triangle begins: [0] [ 1], [1] [ 1, 1], [2] [ 2, 3, 2], [3] [ 5, 10, 10, 5], [4] [14, 35, 45, 35, 14], [5] [42, 126, 196, 196, 126, 42].
Crossrefs
Programs
-
Maple
T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1): seq(print(seq(T(n, k), k = 0..n)), n = 0..7); # Peter Luschny, Mar 21 2024
-
Mathematica
T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Peter Luschny, Mar 21 2024 *)
-
SageMath
def Trow(n): return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
-
SageMath
# As the reverse of x*(1-x)*(1-t*x) w.r.t variable x. t = polygen(QQ, 't') x = LazyPowerSeriesRing(t.parent(), 'x').0 gf = x*(1-x)*(1-t*x) coeffs = gf.revert() / x for n in range(6): print(coeffs[n].list())
Formula
From Peter Luschny, Mar 21 2024: (Start)
T(n, k) = hypergeom([-n, -k], [1], 1)*hypergeom([-n, k - n], [1], 1)/(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A085614(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A250886(n + 1). (End)
Comments