A371396 Maximum number of vertices of a chordal ring graph with diameter n.
6, 14, 20, 38, 48, 74, 88, 122, 140, 182, 204, 254, 280, 338, 368, 434, 468, 542, 580, 662, 704, 794, 840, 938, 988, 1094, 1148, 1262, 1320, 1442, 1504, 1634, 1700, 1838, 1908, 2054, 2128, 2282, 2360, 2522, 2604, 2774, 2860, 3038, 3120, 3314, 3408, 3602, 3700, 3902, 4004, 4214, 4320, 4538, 4648
Offset: 2
Keywords
Examples
For diameter n=3 the maximum number of vertices a(3)=14 is attained by the Heawood graph.
References
- P. Morillo, F. Comellas, and M. A. Fiol, The optimization of chordal ring networks, Communication Technology, Eds. Q. Yasheng and W Xiuying, World Scientific,1987, pages 295--299.
Links
- B. W. Arden and H. Lee, Analysis of chordal ring networks, IEEE Trans. Comput. C-30 (1981), 291-295.
- M. A. Reyes, C. Dalfó, and M. A. Fiol, Structural and Spectral Properties of Chordal Ring, Multi-ring and Mixed Graphs, arXiv:2409.00520 [math.CO2024], 2024 [See Table 6, p. 21]. Also in Symmetry 16 (2024), no. 9, 1135.
- J. L. A. Yebra, M. A. Fiol, P. Morillo, and I. Alegre, The diameter of undirected graphs associated to plane tessellations, Ars Combin. 20-B (1985), 159-171.
Crossrefs
Cf. A309805.
Formula
a(n) = (3*n^2+1)/2 if n is odd.
Conjecture: a(n) = (3/2)*n^2 - n if n is even and n > 2.
Comments