cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371406 Expansion of (1/x) * Series_Reversion( x / ( (1+x)^2 * (1+2*x)^2 ) ).

Original entry on oeis.org

1, 6, 49, 462, 4734, 51216, 575705, 6657846, 78703438, 946740132, 11551512042, 142616584380, 1778372098000, 22365031140900, 283341912929865, 3612782260978470, 46326552943960278, 597034029166804068, 7728885814331709374, 100458438481544424996
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+2*x)^2))/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(2*(n+1), k)*binomial(2*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(2*(n+1),k) * binomial(2*(n+1),n-k).
a(n) = A219538(n+1)/2. - Seiichi Manyama, Dec 24 2024
a(n) = (1/(n+1)) * [x^n] ( (1+x) * (1+2*x) )^(2*(n+1)). - Seiichi Manyama, Dec 25 2024

A379546 Expansion of (1/x) * Series_Reversion( x / ( (1+x)^2 * (1+2*x)^3 ) ).

Original entry on oeis.org

1, 8, 89, 1150, 16190, 240966, 3729185, 59404934, 967608590, 16041857672, 269807678442, 4592326407908, 78954271935856, 1369136489157250, 23918810207745777, 420575805001923782, 7437459126200243030, 132190772588551036800, 2360148586461490077870
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+2*x)^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-2*k)*binomial(n+1, k)*binomial(4*(n+1)-k, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(3*(n+1),k) * binomial(2*(n+1),n-k).
a(n) = A371669(n+1)/2 = (1/(n+1)) * Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(n+1,k) * binomial(4*(n+1)-k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^2 * (1+2*x)^3 )^(n+1).
Showing 1-2 of 2 results.