cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379546 Expansion of (1/x) * Series_Reversion( x / ( (1+x)^2 * (1+2*x)^3 ) ).

Original entry on oeis.org

1, 8, 89, 1150, 16190, 240966, 3729185, 59404934, 967608590, 16041857672, 269807678442, 4592326407908, 78954271935856, 1369136489157250, 23918810207745777, 420575805001923782, 7437459126200243030, 132190772588551036800, 2360148586461490077870
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+2*x)^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-2*k)*binomial(n+1, k)*binomial(4*(n+1)-k, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(3*(n+1),k) * binomial(2*(n+1),n-k).
a(n) = A371669(n+1)/2 = (1/(n+1)) * Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(n+1,k) * binomial(4*(n+1)-k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^2 * (1+2*x)^3 )^(n+1).

A379547 Expansion of (1/x) * Series_Reversion( x / ( (1+x)^2 * (1+2*x)^4 ) ).

Original entry on oeis.org

1, 10, 141, 2318, 41586, 789404, 15588677, 316957910, 6591000606, 139521610540, 2996554128002, 65135251885164, 1430214488595340, 31676376789702720, 706819317765805461, 15874751837921964646, 358585244386746378166, 8141109472248910295708
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x / ( (1+x)^2 * (1+2*x)^4 ),{x,0,18}],x]/x,x] (* Stefano Spezia, Aug 25 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+2*x)^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-2*k)*binomial(n+1, k)*binomial(5*(n+1)-k, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(4*(n+1),k) * binomial(2*(n+1),n-k).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(n+1,k) * binomial(5*(n+1)-k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^2 * (1+2*x)^4 )^(n+1).

A371407 Expansion of (1/x) * Series_Reversion( x / ( (1+x)^2 * (1+3*x)^2 ) ).

Original entry on oeis.org

1, 8, 86, 1064, 14289, 202488, 2980380, 45122792, 698214548, 10993069856, 175546104958, 2836384141720, 46285381498750, 761735217877200, 12628402069223160, 210704642400488040, 3535494883741420908, 59621314428576557664, 1009942893735988354296
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+3*x)^2))/x)
    
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(2*(n+1), k)*binomial(2*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 3^k * binomial(2*(n+1),k) * binomial(2*(n+1),n-k).
Showing 1-3 of 3 results.