A371408 Number of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).
0, 0, 0, 0, 1, 4, 20, 80, 315, 1176, 4284, 15240, 53295, 183700, 625768, 2110472, 7057505, 23427600, 77271120, 253426752, 827009523, 2686728060, 8693388060, 28026897360, 90058925649, 288516259416, 921755412900, 2937377079000, 9338728806225, 29626186593276
Offset: 0
Keywords
Examples
a(4) = 1: UDUDUDUD. a(5) = 4: UDUDUDUUDD, UDUDUUDUDD, UDUUDUDUDD, UUDUDUDUDD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2090
- Wikipedia, Counting lattice paths
Programs
-
Maple
a:= n-> `if`(n<4, 0, binomial(n-1, 3)*add(binomial(n-3, j)* binomial(n-3-j, j-1), j=0..ceil((n-3)/2))/(n-3)): seq(a(n), n=0..29); # second Maple program: a:= proc(n) option remember; `if`(n<5, [0$4, 1][n+1], (n-1)*((2*n-7)*a(n-1)+3*(n-2)*a(n-2))/((n-2)*(n-4))) end: seq(a(n), n=0..29);
Formula
a(n) mod 2 = A121262(n) for n >= 1.