cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371408 Number of Dyck paths of semilength n having exactly three (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 20, 80, 315, 1176, 4284, 15240, 53295, 183700, 625768, 2110472, 7057505, 23427600, 77271120, 253426752, 827009523, 2686728060, 8693388060, 28026897360, 90058925649, 288516259416, 921755412900, 2937377079000, 9338728806225, 29626186593276
Offset: 0

Views

Author

Alois P. Heinz, Mar 22 2024

Keywords

Examples

			a(4) = 1: UDUDUDUD.
a(5) = 4: UDUDUDUUDD, UDUDUUDUDD, UDUUDUDUDD, UUDUDUDUDD.
		

Crossrefs

Column k=3 of A091869.

Programs

  • Maple
    a:= n-> `if`(n<4, 0, binomial(n-1, 3)*add(binomial(n-3, j)*
             binomial(n-3-j, j-1), j=0..ceil((n-3)/2))/(n-3)):
    seq(a(n), n=0..29);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [0$4, 1][n+1],
         (n-1)*((2*n-7)*a(n-1)+3*(n-2)*a(n-2))/((n-2)*(n-4)))
        end:
    seq(a(n), n=0..29);

Formula

a(n) mod 2 = A121262(n) for n >= 1.