A371448 Numbers such that (1) the product of prime indices is squarefree, and (2) the binary indices of prime indices cover an initial interval of positive integers.
1, 2, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 26, 30, 32, 33, 34, 40, 47, 48, 51, 52, 55, 60, 64, 66, 68, 80, 85, 86, 94, 96, 102, 104, 110, 120, 123, 127, 128, 132, 136, 141, 143, 160, 165, 170, 172, 187, 188, 192, 204, 205, 208, 215, 220, 221, 226, 240, 246
Offset: 1
Keywords
Examples
The terms together with their binary indices of prime indices begin: 1: {} 2: {{1}} 4: {{1},{1}} 5: {{1,2}} 6: {{1},{2}} 8: {{1},{1},{1}} 10: {{1},{1,2}} 12: {{1},{1},{2}} 15: {{2},{1,2}} 16: {{1},{1},{1},{1}} 17: {{1,2,3}} 20: {{1},{1},{1,2}} 24: {{1},{1},{1},{2}} 26: {{1},{2,3}} 30: {{1},{2},{1,2}} 32: {{1},{1},{1},{1},{1}} 33: {{2},{1,3}} 34: {{1},{1,2,3}} 40: {{1},{1},{1},{1,2}} 47: {{1,2,3,4}} 48: {{1},{1},{1},{1},{2}} 51: {{2},{1,2,3}}
Crossrefs
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000], SquareFreeQ[Times@@prix[#]]&&normQ[Join@@bpe/@prix[#]]&]
Comments