cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A371292 Numbers whose binary indices have prime indices covering an initial interval of positive integers.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 86, 87, 92, 93, 94, 95, 112, 113, 114, 115, 116, 117, 118, 119
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their prime indices of binary indices begin:
   0: {}
   1: {{}}
   2: {{1}}
   3: {{},{1}}
   6: {{1},{2}}
   7: {{},{1},{2}}
   8: {{1,1}}
   9: {{},{1,1}}
  10: {{1},{1,1}}
  11: {{},{1},{1,1}}
  12: {{2},{1,1}}
  13: {{},{2},{1,1}}
  14: {{1},{2},{1,1}}
  15: {{},{1},{2},{1,1}}
  22: {{1},{2},{3}}
  23: {{},{1},{2},{3}}
  28: {{2},{1,1},{3}}
  29: {{},{2},{1,1},{3}}
  30: {{1},{2},{1,1},{3}}
  31: {{},{1},{2},{1,1},{3}}
  32: {{1,2}}
		

Crossrefs

The case with squarefree product of prime indices is A371293.
For binary indices of each prime index we have A371447, A371448.
The connected components of this multiset system are counted by A371452.
A000009 counts partitions covering initial interval, compositions A107429.
A000670 counts patterns, ranked by A333217.
A011782 counts multisets covering an initial interval.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A131689 counts patterns by number of distinct parts.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],normQ[Join@@prix/@bpe[#]]&]
  • Python
    from itertools import count, islice
    from sympy import sieve, factorint
    def a_gen():
        for n in count(0):
            s = set()
            b = [(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']
            for i in b:
                p = factorint(i)
                for j in p:
                    s.add(sieve.search(j)[0])
            x = sorted(s)
            y = len(x)
            if sum(x) == (y*(y+1))//2:
                yield n
    A371292_list = list(islice(a_gen(), 65)) # John Tyler Rascoe, May 21 2024

A371289 Numbers whose binary indices have squarefree product.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 48, 49, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 96, 97, 112, 113, 512, 513, 516, 517, 576, 577, 580, 581, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1040, 1041, 1042
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their binary expansions and binary indices begin:
     0:              0 ~ {}
     1:              1 ~ {1}
     2:             10 ~ {2}
     3:             11 ~ {1,2}
     4:            100 ~ {3}
     5:            101 ~ {1,3}
     6:            110 ~ {2,3}
     7:            111 ~ {1,2,3}
    16:          10000 ~ {5}
    17:          10001 ~ {1,5}
    18:          10010 ~ {2,5}
    19:          10011 ~ {1,2,5}
    20:          10100 ~ {3,5}
    21:          10101 ~ {1,3,5}
    22:          10110 ~ {2,3,5}
    23:          10111 ~ {1,2,3,5}
    32:         100000 ~ {6}
    33:         100001 ~ {1,6}
    48:         110000 ~ {5,6}
    49:         110001 ~ {1,5,6}
    64:        1000000 ~ {7}
    65:        1000001 ~ {1,7}
    66:        1000010 ~ {2,7}
		

Crossrefs

For prime instead of binary indices we have A302505.
For squarefree parts we have A368533, for prime indices A302478.
A005117 lists squarefree numbers.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SquareFreeQ[Times@@bpe[#]]&]

A371447 Numbers whose binary indices of prime indices cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 12, 15, 16, 17, 18, 20, 24, 25, 26, 30, 32, 33, 34, 35, 36, 40, 42, 45, 47, 48, 50, 51, 52, 54, 55, 60, 64, 65, 66, 68, 70, 72, 75, 78, 80, 84, 85, 86, 90, 94, 96, 99, 100, 102, 104, 105, 108, 110, 119, 120, 123, 125, 126, 127, 128, 130
Offset: 1

Views

Author

Gus Wiseman, Mar 31 2024

Keywords

Comments

Also Heinz numbers of integer partitions whose parts have binary indices covering an initial interval.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their binary indices of prime indices begin:
   1: {}
   2: {{1}}
   4: {{1},{1}}
   5: {{1,2}}
   6: {{1},{2}}
   8: {{1},{1},{1}}
  10: {{1},{1,2}}
  12: {{1},{1},{2}}
  15: {{2},{1,2}}
  16: {{1},{1},{1},{1}}
  17: {{1,2,3}}
  18: {{1},{2},{2}}
  20: {{1},{1},{1,2}}
  24: {{1},{1},{1},{2}}
  25: {{1,2},{1,2}}
  26: {{1},{2,3}}
  30: {{1},{2},{1,2}}
  32: {{1},{1},{1},{1},{1}}
		

Crossrefs

For prime indices of prime indices we have A320456.
For binary indices of binary indices we have A326754.
An opposite version is A371292, A371293.
The case with squarefree product of prime indices is A371448.
The connected components of this multiset system are counted by A371451.
A000009 counts partitions covering initial interval, compositions A107429.
A000670 counts patterns, ranked by A333217.
A011782 counts multisets covering an initial interval.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A131689 counts patterns by number of distinct parts.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],normQ[Join@@bpe/@prix[#]]&]

A371293 Numbers whose binary indices have (1) prime indices covering an initial interval and (2) squarefree product.

Original entry on oeis.org

1, 2, 3, 6, 7, 22, 23, 32, 33, 48, 49, 86, 87, 112, 113, 516, 517, 580, 581, 1110, 1111, 1136, 1137, 1604, 1605, 5206, 5207, 5232, 5233, 5700, 5701, 8212, 8213, 9236, 9237, 13332, 13333, 16386, 16387, 16450, 16451, 17474, 17475, 21570, 21571, 24576, 24577
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The terms together with their prime indices of binary indices begin:
    1: {{}}
    2: {{1}}
    3: {{},{1}}
    6: {{1},{2}}
    7: {{},{1},{2}}
   22: {{1},{2},{3}}
   23: {{},{1},{2},{3}}
   32: {{1,2}}
   33: {{},{1,2}}
   48: {{3},{1,2}}
   49: {{},{3},{1,2}}
   86: {{1},{2},{3},{4}}
   87: {{},{1},{2},{3},{4}}
  112: {{3},{1,2},{4}}
  113: {{},{3},{1,2},{4}}
  516: {{2},{1,3}}
  517: {{},{2},{1,3}}
  580: {{2},{4},{1,3}}
  581: {{},{2},{4},{1,3}}
		

Crossrefs

Without the covering condition we have A371289.
Without squarefree product we have A371292.
Interchanging binary and prime indices gives A371448.
A000009 counts partitions covering initial interval, compositions A107429.
A000670 counts ordered set partitions, allowing empty sets A000629.
A005117 lists squarefree numbers.
A011782 counts multisets covering an initial interval.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A131689 counts patterns by number of distinct parts.
A302521 lists MM-numbers of set partitions, with empties A302505.
A326701 lists BII-numbers of set partitions.
A368533 lists numbers with squarefree binary indices, prime indices A302478.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SquareFreeQ[Times @@ bpe[#]]&&normQ[Join@@prix/@bpe[#]]&]

Formula

Intersection of A371292 and A371289.
Showing 1-4 of 4 results.