cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371458 Expansion of 1/(1 - x/(1 - 9*x^3)^(1/3)).

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 10, 31, 61, 100, 274, 565, 1000, 2551, 5380, 10000, 24376, 52018, 100000, 236389, 507706, 1000000, 2313346, 4986178, 10000000, 22773334, 49180165, 100000000, 225092416, 486575935, 1000000000, 2231117230, 4824998773, 10000000000
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2024

Keywords

Crossrefs

Programs

  • Maple
    A371458 := proc(n)
        add(9^k*binomial(n/3-1,k),k=0..floor(n/3)) ;
    end proc:
    seq(A371458(n),n=0..70) ; # R. J. Mathar, Jun 07 2024
  • PARI
    a(n) = sum(k=0, n\3, 9^k*binomial(n/3-1, k));

Formula

a(3*n) = 10^(n-1) for n > 0.
a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(n/3-1,k).
D-finite with recurrence (n-1)*(n-2)*a(n) +4*(-7*n^2+48*n-86)*a(n-3) +9*(29*n-141)*(n-6)*a(n-6) -810*(n-6)*(n-9)*a(n-9)=0. - R. J. Mathar, Jun 07 2024
a(n) == 1 (mod 3). - Seiichi Manyama, Jun 11 2024