A371463 Numbers such that the arithmetic mean of its digits is equal to twice the population standard deviation of its digits.
0, 13, 26, 31, 39, 62, 93, 1133, 1313, 1331, 1779, 1797, 1977, 2266, 2626, 2662, 3113, 3131, 3311, 3399, 3939, 3993, 6226, 6262, 6622, 7179, 7197, 7719, 7791, 7917, 7971, 9177, 9339, 9393, 9717, 9771, 9933, 10111, 11011, 11101, 11110, 11123, 11132, 11213, 11231
Offset: 1
Examples
1133 is a term since the mean of the digits is (1 + 1 + 3 + 3)/4 = 2 and the standard deviation of the digits is sqrt(((1-2)^2 + (1-2)^2 + (3-2)^2 + (3-2)^2)/4) = 1.
Links
- Wikipedia, Coefficient of variation.
- Wikipedia, Standard deviation.
Programs
-
Mathematica
DigStd[n_]:=If[n==0||IntegerLength[n]==1, 0, Sqrt[(IntegerLength[n]-1)/IntegerLength[n]]StandardDeviation[IntegerDigits[n]]]; Select[Range[0, 12000], Mean[IntegerDigits[#]]==2DigStd[#]&]
-
Python
from itertools import count, islice def A371463_gen(startvalue=0): # generator of terms >= startvalue return filter(lambda n:5*sum(s:=tuple(map(int,str(n))))**2 == len(s)*sum(d**2 for d in s)<<2, count(max(startvalue,0))) A371463_list = list(islice(A371463_gen(),20)) # Chai Wah Wu, Mar 30 2024
Comments