cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A371494 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^2.

Original entry on oeis.org

1, 2, 5, 18, 72, 310, 1399, 6532, 31287, 152876, 759034, 3818410, 19420713, 99697784, 515909606, 2688267462, 14093211259, 74281217492, 393389969722, 2092312452404, 11171325560120, 59854910468196, 321717833732186, 1734250394445622, 9373581927760595
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(3*k+1, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(3*k+1,k)/(k+1).

A371495 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^3.

Original entry on oeis.org

1, 3, 12, 64, 381, 2430, 16227, 112008, 792717, 5721165, 41945373, 311529831, 2338909219, 17722127580, 135346614906, 1040779011412, 8051611785006, 62620659604659, 489339248275242, 3840135625895886, 30251386980891657, 239138782521553659, 1896380840948325606
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(4*k+2, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(4*k+2,k)/(k+1).

A371540 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^5.

Original entry on oeis.org

1, 5, 35, 310, 3055, 32151, 353755, 4019825, 46808750, 555621400, 6698027100, 81779512155, 1009194553315, 12567338972700, 157725047958100, 1992990741398625, 25333585976926275, 323725357496659565, 4156196637610760235, 53585106340408250725, 693491493195479127175
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+4, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+4,k)/(k+1).
G.f.: A(x) = B(x)^5 where B(x) is the g.f. of A349362.

A370720 G.f. A(x) satisfies A(x) = (1 + x*A(x)^(3/4) / (1+x))^4.

Original entry on oeis.org

1, 4, 14, 56, 241, 1088, 5082, 24352, 119036, 591224, 2975150, 15136036, 77721311, 402276364, 2096572304, 10993229392, 57951531087, 306954017592, 1632807888084, 8719002979360, 46720890435026, 251149205370864, 1353974197346154, 7318852828505148
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(3*k+4, k)/(3*k+4));

Formula

a(n) = 4 * Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(3*k+4,k)/(3*k+4).

A371544 G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1+x))^5.

Original entry on oeis.org

1, 5, 30, 220, 1775, 15206, 135745, 1248900, 11758240, 112736305, 1096960024, 10804727805, 107520029780, 1079346767060, 10917110317185, 111149886462926, 1138205538056395, 11715403351807780, 121137702435412040, 1257720947476195045, 13106870738511517659
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(5*k+5, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(5*k+5,k)/(k+1).
G.f.: A(x) = B(x)^5 where B(x) is the g.f. of A349361.
Showing 1-5 of 5 results.