cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A371495 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^3.

Original entry on oeis.org

1, 3, 12, 64, 381, 2430, 16227, 112008, 792717, 5721165, 41945373, 311529831, 2338909219, 17722127580, 135346614906, 1040779011412, 8051611785006, 62620659604659, 489339248275242, 3840135625895886, 30251386980891657, 239138782521553659, 1896380840948325606
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(4*k+2, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(4*k+2,k)/(k+1).

A371496 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^4.

Original entry on oeis.org

1, 4, 22, 156, 1233, 10420, 92120, 841376, 7876616, 75177492, 728784802, 7156081536, 71024862452, 711383912672, 7181295333306, 72989746391780, 746308443708928, 7671359593228624, 79226966456758424, 821691132077059740, 8554576791134761387
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(5*k+3, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(5*k+3,k)/(k+1).
G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A349361.

A371540 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^5.

Original entry on oeis.org

1, 5, 35, 310, 3055, 32151, 353755, 4019825, 46808750, 555621400, 6698027100, 81779512155, 1009194553315, 12567338972700, 157725047958100, 1992990741398625, 25333585976926275, 323725357496659565, 4156196637610760235, 53585106340408250725, 693491493195479127175
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(6*k+4, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(6*k+4,k)/(k+1).
G.f.: A(x) = B(x)^5 where B(x) is the g.f. of A349362.

A371542 G.f. A(x) satisfies A(x) = (1 + x*A(x) / (1+x))^3.

Original entry on oeis.org

1, 3, 9, 34, 141, 621, 2849, 13467, 65127, 320686, 1602294, 8103087, 41397186, 213331026, 1107604764, 5788249329, 30422897664, 160717169622, 852894534042, 4544635033164, 24305345593290, 130423538829518, 701994030831654, 3788979493701069, 20503322609731348
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(3*k+3, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(3*k+3,k)/(k+1).
From Seiichi Manyama, Dec 10 2024: (Start)
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^(2/3)/(1 + x) )^3.
G.f. A(x) satisfies A(x) = 1 + x * (1 + A(x)^(4/3) + A(x)^(5/3)).
G.f.: A(x) = (1 + B(x))^3 where B(x) is the g.f. of A127897. (End)

A370720 G.f. A(x) satisfies A(x) = (1 + x*A(x)^(3/4) / (1+x))^4.

Original entry on oeis.org

1, 4, 14, 56, 241, 1088, 5082, 24352, 119036, 591224, 2975150, 15136036, 77721311, 402276364, 2096572304, 10993229392, 57951531087, 306954017592, 1632807888084, 8719002979360, 46720890435026, 251149205370864, 1353974197346154, 7318852828505148
Offset: 0

Views

Author

Seiichi Manyama, Mar 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(3*k+4, k)/(3*k+4));

Formula

a(n) = 4 * Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(3*k+4,k)/(3*k+4).
Showing 1-5 of 5 results.