cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371561 Numbers with multiplicative digital root of 5 that are free of 1s and have their digits in ascending order.

Original entry on oeis.org

5, 35, 57, 355, 359, 557, 579, 3335, 3357, 5579, 5777, 33557, 35559, 333555, 357799, 557779, 3335779, 3355777, 33333577
Offset: 1

Views

Author

Sergio Pimentel, Mar 27 2024

Keywords

Comments

Conjectured to be complete.
If it exists, a(20) > 10^500. - Michael S. Branicky, Apr 18 2024

Crossrefs

Programs

  • Mathematica
    A031347 = Table[NestWhile[Times @@ IntegerDigits[#] &, n, # > 9 &], {n, 1, 100000}]; Select[Range[100000], A031347[[#]] == 5 && DigitCount[#, 10, 1] == 0 && Sort[IntegerDigits[#]] == IntegerDigits[#] &] (* Vaclav Kotesovec, Apr 17 2024 *)
  • Python
    from math import prod
    from itertools import count, islice, combinations_with_replacement as mc
    def A031347(n):
        while n > 9: n = prod(map(int, str(n)))
        return n
    def bgen(): yield from (m for d in count(1) for m in mc((3,5,7,9), d))
    def agen(): yield from (int("".join(map(str, t))) for t in bgen() if A031347(prod(t)) == 5)
    print(list(islice(agen(), 19))) # Michael S. Branicky, Apr 17 2024, edited Apr 18 2024 after Chai Wah Wu
    
  • Python
    from math import prod
    from itertools import count, islice
    def A371561_gen(): # generator of terms
        for l in count(1):
            for a in range(l,-1,-1):
                a3 = 3**a
                for b in range(l-a,-1,-1):
                    b3 = a3*5**b
                    for c in range(l-a-b,-1,-1):
                        d = l-a-b-c
                        d3 = b3*7**c*9**d
                        while d3 > 9:
                            d3 = prod(int(x) for x in str(d3))
                        if d3==5:
                            yield (10**(a+b+c+d)-1)//3+(10**d*(10**c*(10**b+1)+1)-3)*2//9
    A371561_list = list(islice(A371561_gen(),19)) # Chai Wah Wu, Apr 17 2024