A371564 Number of binary strings of length n which have more 01 than 00 substrings.
0, 0, 1, 3, 6, 13, 28, 56, 113, 231, 464, 930, 1875, 3766, 7547, 15151, 30398, 60917, 122116, 244786, 490435, 982544, 1968413, 3942649, 7896116, 15813268, 31665423, 63403245, 126945244, 254152625, 508798604, 1018538560, 2038870881, 4081149015, 8168806568
Offset: 0
Keywords
Examples
a(4) = 6: 0101, 0110, 0111, 1010, 1011, 1101. a(5) = 13: 0010, 0100, 0101, 0101, 0110, 0111, 0111, 1010, 1011, 1011, 1101, 1101, 1110.
Crossrefs
Programs
-
Maple
b:= proc(n, l, t) option remember; `if`(n+t<1, 0, `if`(n=0, 1, add(b(n-1, i, t-`if`(l=0, (-1)^i, 0)), i=0..1))) end: a:= n-> b(n, 2, 0): seq(a(n), n=0..34); # Alois P. Heinz, Mar 27 2024
-
Mathematica
tup[n_] := Tuples[{0, 1}, n]; cou[lst_List] := Count[lst, {0, 1}] > Count[lst, {0, 0}]; par[lst_List] := Partition[lst, 2, 1]; a[n_] := Map[cou, Map[par, tup[n]]] // Boole // Total; Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}]
Formula
a(n) = (1 - 8*(n-4)*a(n-5) + 4*(3*n-10)*a(n-4) + 2*(8-3*n)*a(n-3) + (5*n-12)*a(n-2) + (7-4*n)*a(n-1))/(1-n) for n>=5.
For n >= 2, a(n) = 2*a(n-1) - A163493(n) + A163493(n-1) + A163493(n-2) + A370048(n-2). - Max Alekseyev, May 01 2024
G.f.: ((1-3*x+2*x^2)^(-1) - (1-2*x+x^2-4*x^3+4*x^4)^(-1/2)) * x / 2. - Max Alekseyev, Apr 30 2024