A372046 Composite numbers that divide the concatenation of the reverse of their ascending order prime factors, with repetition.
998, 1636, 9998, 15584, 49447, 99998, 1639964, 2794612, 9999998, 15842836, 1639360636, 1968390098, 27879461212, 65226742928
Offset: 1
Examples
998 is a term as 998 = 2 * 499 = "2" * "994" when each prime factor is reversed. This gives "2994", and 2994 is divisible by 998. 15584 is a term as 15584 = 2 * 2 * 2 * 2 * 2 * 487 = "2" * "2" * "2" * "2" * "2" * "784" when each prime factor is reversed. This gives "22222784", and 22222784 is divisible by 15584.
Programs
-
Mathematica
a[n_Integer] := Module[{f}, f = Flatten[ConstantArray @@@ FactorInteger[n]]; If[Length[f] < 2, Return[False]]; Mod[FromDigits[StringJoin[StringReverse[IntegerString[#, 10]] & /@ f], 10], n] == 0]; Select[Range[2, 10^5], a] (* Robert P. P. McKone, May 03 2024 *)
-
Python
from itertools import count, islice from sympy import factorint def A372046_gen(startvalue=4): # generator of terms >= startvalue for n in count(max(startvalue,4)): f = factorint(n) if sum(f.values()) > 1: c = 0 for p in sorted(f): a = pow(10,len(s:=str(p)),n) q = int(s[::-1]) for _ in range(f[p]): c = (c*a+q)%n if not c: yield n A372046_list = list(islice(A372046_gen(),5)) # Chai Wah Wu, Apr 24 2024
Extensions
a(13)-a(14) from Robert P. P. McKone, May 05 2024
Comments