cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371707 Constant r > 0 satisfying: Sum_{n>=0} (r^n + 2*Pi*i)^n/n! = C + i*S such that C^2 + S^2 = 1.

Original entry on oeis.org

2, 7, 3, 4, 3, 9, 0, 0, 1, 9, 0, 8, 5, 6, 8, 3, 8, 5, 5, 3, 8, 7, 9, 1, 7, 5, 8, 0, 0, 4, 6, 9, 8, 1, 5, 0, 2, 4, 0, 1, 7, 4, 5, 5, 6, 0, 1, 9, 5, 3, 7, 4, 0, 3, 7, 9, 5, 7, 8, 7, 7, 4, 6, 4, 5, 0, 9, 3, 5, 0, 8, 6, 8, 8, 7, 8, 4, 2, 8, 6, 6, 5, 9, 7, 5, 4, 3, 3, 8, 7, 4, 2, 2, 9, 6, 2, 1, 9, 5, 2
Offset: 0

Views

Author

Paul D. Hanna, Apr 09 2024

Keywords

Comments

Related identity: Sum_{n>=0} (x^n + y)^n/n! = Sum_{n>=0} exp(y*x^n)*x^(n^2)/n!. Here, x = r and y = 2*Pi*i.
What are the roots of Norm( Sum_{n>=0} (x^n + 2*Pi*i)^n/n! ) = 1? The real roots include x = 0 and x = r (this constant).

Examples

			The initial 500 digits of this constant r are
r = 0.27343900190856838553879175800469815024017455601953\
74037957877464509350868878428665975433874229621952\
21271807208862504474781327669150216691806622917186\
30052292342530146845288659570856888661537928135397\
91914154858221560663972999347727219299210079054658\
20785838554943078876634169703813817526574697076018\
43103025671330263969269247113168608393647224573552\
82695245129846145197371729802801821910764770241403\
85315562772171090016733480930506290614196661276630\
35680469795753191100711562687066719873558759501438...
Given Sum_{n>=0} (r^n + 2*Pi*i)^n / n! = C + i*S
then C = Sum_{n>=0} cos(2*Pi*r^n) * r^(n^2) / n!, where
C = 0.96236940120128609855708390989630224707797733780139\
33346689286186097367092064030604732865267035268595\
44279783779811281344593178122348416729686502694192\
27215955652725928674242226419071059523037649451781\
36060669147586159699815697962817267659814744582224\
93126268783872251860132042094952557434607056861286\
20902477149931860926346847824008347947488598827305\
47837372109484356517193566333052743194953698066525\
72228584587713864226102674129509160583381421007047\
75118828482389128699072732009353421657729660481717...
and S = Sum_{n>=0} sin(2*Pi*r^n) * r^(n^2) / n!, where
S = 0.27174461472396842102515050866607715426951746748919\
04159412993022348271493896385066506863889535797824\
35085649751784233166430963459007191963331589808443\
52259856849111637575812332490848107413710402589323\
75221334357855133874979455560441735994213395179878\
38917993730963815574520261440791182088848636006332\
68221934823032560291871222621378256174374612116671\
09358271083370500808439006024716239994653435216572\
21204963868973568338610259219318795040671357965613\
68248089245008828798740589773672045329008665505374...
such that C^2 + S^2 = 1.
		

Crossrefs

Cf. A326600.

Formula

Constant r and related values C and S satisfy the following formulas.
(1) Sum_{n>=0} (r^n + 2*Pi*i)^n/n! = C + i*S such that C^2 + S^2 = 1.
(2) C = Sum_{n>=0} cos(2*Pi*r^n) * r^(n^2) / n!.
(3) S = Sum_{n>=0} sin(2*Pi*r^n) * r^(n^2) / n!.