cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371709 Expansion of g.f. A(x) satisfying A( x*A(x)^2 + x*A(x)^3 ) = A(x)^3.

Original entry on oeis.org

1, 1, 1, 2, 6, 16, 39, 99, 271, 764, 2157, 6128, 17658, 51534, 151635, 448962, 1337493, 4008040, 12072594, 36524898, 110943633, 338218626, 1034509917, 3173811240, 9763898994, 30113782641, 93094164244, 288415278638, 895332445053, 2784580242557, 8675408291598, 27072326322939
Offset: 1

Views

Author

Paul D. Hanna, May 02 2024

Keywords

Comments

Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108):
(1) C(x)^2 = C( x*C(x)*(1 + C(x)) ),
(2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ),
(3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ),
(4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0.
a(3^n) == 1 (mod 3) for n >= 0.
a(2*3^n) == 1 (mod 3) for n >= 0.
a(n) == 2 (mod 3) iff n is the sum of 2 distinct powers of 3 (A038464).

Examples

			G.f. A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 16*x^6 + 39*x^7 + 99*x^8 + 271*x^9 + 764*x^10 + 2157*x^11 + 6128*x^12 + 17658*x^13 + 51534*x^14 + 151635*x^15 + 448962*x^16 + ...
where A( x*A(x)^2*(1 + A(x)) ) = A(x)^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 17*x^6 + 48*x^7 + 126*x^8 + 332*x^9 + 918*x^10 + 2616*x^11 + 7504*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 36*x^7 + 105*x^8 + 292*x^9 + 801*x^10 + 2256*x^11 + 6515*x^12 + 18981*x^13 + ...
A(x)^2 + A(x)^3 = x^2 + 3*x^3 + 6*x^4 + 12*x^5 + 30*x^6 + 84*x^7 + 231*x^8 + 624*x^9 + 1719*x^10 + 4872*x^11 + 14019*x^12 + 40599*x^13 + ...
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) * (1+x)/(1+x^3) = x - 2*x^4 + 3*x^7 - 5*x^10 + 7*x^13 - 9*x^16 + 12*x^19 - 15*x^22 + 18*x^25 - 23*x^28 + ... + (-1)^n*A005704(n)*x^(3*n+1) + ...
where A005704 is the number of partitions of 3*n into powers of 3.
We can show that g.f. A(x) = A( x*A(x)^2*(1 + A(x)) )^(1/3) satisfies
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n))
by substituting x*A(x)^2*(1 + A(x)) for x in (4) to obtain
A(x)^3 = x * A(x)^2*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(3^n))
which is equivalent to formula (4).
SPECIFIC VALUES.
A(3/10) = 0.526165645044542830201162330432965674027415264612114520...
A(1/4) = 0.353259384374080248921564026412797625837830114153200664...
A(1/5) = 0.255218141344695821239609680309162895225297482063273545...
A(t) = 1/2 and A(t*3/8) = 1/8 at t = (1/2)/Product_{n>=0} (1 + 1/2^(3^n)) = 0.295718718466711580562679377308518930409875701753934072...
A(t) = 1/3 and A(t*4/27) = 1/27 at t = (1/3)/Product_{n>=0} (1 + 1/3^(3^n)) = 0.241059181496179959557718992589733756750585121455883861...
A(t) = 1/4 and A(t*5/64) = 1/64 at t = (1/4)/Product_{n>=0} (1 + 1/4^(3^n)) = 0.196922325724019432212969925740117827612003158137366017...
		

Crossrefs

Programs

  • PARI
    /* Using series reversion of x/Product_{n>=0} (1 + x^(3^n)) */
    {a(n) = my(A); A = serreverse( x/prod(k=0,ceil(log(n)/log(3)), (1 + x^(3^k) +x*O(x^n)) ) ); polcoeff(A,n)}
    for(n=1,35, print1(a(n),", "))
    
  • PARI
    /* Using A(x)^3 = A( x*A(x)^2 + x*A(x)^3 ) */
    {a(n) = my(A=[1],F); for(i=1,n, A = concat(A,0); F = x*Ser(A);
    A[#A] = polcoeff( subst(F,x, x*F^2 + x*F^3 ) - F^3, #A+2) ); A[n]}
    for(n=1,35, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A( x*A(x)^2*(1 + A(x)) ).
(2) A(x)^9 = A( x*A(x)^8*(1 + A(x))*(1 + A(x)^3) ).
(3) A(x)^27 = A( x*A(x)^26*(1 + A(x))*(1 + A(x)^3)*(1 + A(x)^9) ).
(4) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n)).
(5) A(x) = Series_Reversion( x / Product_{n>=0} (1 + x^(3^n)) ).
a(n) ~ c * d^n / n^(3/2), where d = 3.2753449994351908157330968510747739... and c = 0.1559869008021616116037651076359... - Vaclav Kotesovec, May 03 2024
The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 3^n * A(r)^(3^n) / (1 + A(r)^(3^n)) and r = A(r) / Product_{n>=0} (1 + A(r)^(3^n)), where r = 0.30531134893345362211... = 1/d (d is given above) and A(r) = 0.600582105427215700175254768411726892599... - Paul D. Hanna, May 03 2024