cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371714 Expansion of g.f. A(x) satisfying A( x^3*A(x) - x^3*A(x)^2 ) = x^4.

Original entry on oeis.org

1, 1, 2, 5, 13, 40, 126, 409, 1360, 4611, 15878, 55384, 195282, 694910, 2492454, 9001405, 32704855, 119462142, 438441266, 1616001547, 5979144981, 22199682130, 82685478702, 308864831632, 1156806962608, 4343254831180, 16343719170558, 61630500821158, 232854921227616, 881378279895534
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 40*x^6 + 126*x^7 + 409*x^8 + 1360*x^9 + 4611*x^10 + 15878*x^11 + 55384*x^12 + ...
where A( x^3*A(x)*(1 - A(x)) ) = x^4.
RELATED SERIES.
(1) Let R(x) be the series reversion of A(x), R(A(x)) = x, where
R(x) = x - x^2 + x^5 - 5*x^6 + 10*x^7 - 10*x^8 + 10*x^9 - 46*x^10 + 180*x^11 - 420*x^12 + 665*x^13 - 1085*x^14 + 3150*x^15 - 10190*x^16 + ...
upon comparing the expansion of R(x) to the series
A(x)*(1 - A(x)) = x - x^5 + x^17 - 5*x^21 + 10*x^25 - 10*x^29 + 10*x^33 - 46*x^37 + 180*x^41 - 420*x^45 + 665*x^49 - 1085*x^53 + ...
we see that A(x)*(1 - A(x)) = R(x^4)/x^3.
(2) Let B(x) be the even bisection of A(x),
B(x) = x^2 + 5*x^4 + 40*x^6 + 409*x^8 + 4611*x^10 + 55384*x^12 + ...,
then
B( x^3*A(x)*(1 - A(x)) ) = x^8 - 2*x^12 + 6*x^16 - 20*x^20 + 72*x^24 - 272*x^28 + 1064*x^32 + ... + (-1)^(n-1)*A071356(n-1)*x^(8*n) + ...
that is,
B( x^3*A(x)*(1 - A(x)) ) = (1 + 2*x^4 - sqrt(1 + 4*x^4 - 4*x^8))/4.
SPECIFIC VALUES.
Let r be the radius of convergence, then A(r) = 1/2, and
r = A(r^3/4)^(1/4) = 0.2509961746510523531562794924202947105158...
A(1/4) = 0.4687500009132742494908083392815082722109...
A(1/5) = 0.2756788017179389881387593924191299703438...
A(1/6) = 0.2111022081144963995053917910635203605728...
A(1/8) = 0.1464034536677082355575260818928469620931...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1, 1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff(x^4 - subst(F, x, x^3*F - x^3*F^2), #A+3) ); A[n]}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( x^3*A(x)*(1 - A(x)) ) = x^4.
(2) A( -x^3*A(x)*(1 - A(x)) ) = (1 - sqrt(1 + 4*x^4 - 4*x^8))/2.
(3) A(x) = (1 - sqrt(1 - 4*R(x^4)/x^3))/2, where R(A(x)) = x.
a(n) ~ c * d^n / n^(3/2), where d = 3.9841244648060905977016688650241255776651... and c = 0.13991881826475367145488117165180720475565183... - Vaclav Kotesovec, Apr 05 2024
Let r be the radius of convergence, then A(r) = 1/2, where r = A(r^3/4)^(1/4) = 0.2509961746510523531... = 1/d (d is given above). - Paul D. Hanna, Apr 06 2024