A371763 Triangle read by rows: Trace of the Akiyama-Tanigawa algorithm for powers x^2.
0, 1, 1, 5, 6, 4, 13, 18, 15, 9, 29, 42, 39, 28, 16, 61, 90, 87, 68, 45, 25, 125, 186, 183, 148, 105, 66, 36, 253, 378, 375, 308, 225, 150, 91, 49, 509, 762, 759, 628, 465, 318, 203, 120, 64, 1021, 1530, 1527, 1268, 945, 654, 427, 264, 153, 81
Offset: 0
Examples
Triangle starts: 0: 0 1: 1, 1 2: 5, 6, 4 3: 13, 18, 15, 9 4: 29, 42, 39, 28, 16 5: 61, 90, 87, 68, 45, 25 6: 125, 186, 183, 148, 105, 66, 36 7: 253, 378, 375, 308, 225, 150, 91, 49
Crossrefs
Programs
-
Julia
function ATPtriangle(k::Int, len::Int) A = Vector{BigInt}(undef, len) B = Vector{Vector{BigInt}}(undef, len) for n in 0:len-1 A[n+1] = n^k for j = n:-1:1 A[j] = j * (A[j+1] - A[j]) end B[n+1] = A[1:n+1] end return B end for (n, row) in enumerate(ATPtriangle(2, 9)) println("$(n-1): ", row) end
-
Maple
ATProw := proc(k, n) local m, j, A; for m from 0 by 1 to n do A[m] := m^k; for j from m by -1 to 1 do A[j - 1] := j * (A[j] - A[j - 1]) od od; convert(A, list) end: ATPtriangle := (p, len) -> local k; ListTools:-Flatten([seq(ATProw(p, k), k = 0..len)]): ATPtriangle(2, 9);
-
Mathematica
T[n,k] := If[n==k, n^2, (k+1)*(2^(n-k)*(k+2)-3)]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 19 2024 *)
-
Python
# See function ATPowList in A371761.
Formula
T(n, k) = n^2 if n=k, otherwise (k + 1)*(2^(n - k)*(k + 2) - 3). - Detlef Meya, Apr 19 2024
Comments