A371783 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into d = A027750(n,k) blocks with equal sums.
1, 2, 1, 3, 1, 5, 3, 1, 7, 1, 11, 6, 4, 1, 15, 1, 22, 14, 5, 1, 30, 10, 1, 42, 25, 6, 1, 56, 1, 77, 53, 30, 15, 7, 1, 101, 1, 135, 89, 8, 1, 176, 65, 21, 1, 231, 167, 55, 9, 1, 297, 1, 385, 278, 173, 28, 10, 1, 490, 1, 627, 480, 140, 91, 11, 1, 792, 343, 36, 1
Offset: 1
Examples
Triangle begins: 1 2 1 3 1 5 3 1 7 1 11 6 4 1 15 1 22 14 5 1 30 10 1 42 25 6 1 56 1 77 53 30 15 7 1 101 1 135 89 8 1 176 65 21 1 Row n = 6 counts the following partitions: (6) (33) (222) (111111) (33) (321) (2211) (42) (2211) (21111) (51) (3111) (111111) (222) (21111) (321) (111111) (411) (2211) (3111) (21111) (111111)
Crossrefs
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; facs[n_]:=If[n<=1,{{}}, Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,1,8},{k,Divisors[n]}]
Extensions
More terms from Jinyuan Wang, Feb 13 2025
Name edited by Peter Munn, Mar 05 2025
Comments