cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371785 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-k,n-2*k).

Original entry on oeis.org

1, 3, 14, 76, 441, 2652, 16303, 101727, 641630, 4080154, 26112384, 167978615, 1085182436, 7035477777, 45750406205, 298279844724, 1949096816505, 12761551428024, 83701819019155, 549850618355886, 3617119500327536, 23824816811652905, 157106267803712709
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-k, n-2*k));

Formula

a(n) = [x^n] 1/((1-x+x^2) * (1-x)^(2*n)).

A371787 a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(5*n-k,n-2*k).

Original entry on oeis.org

1, 5, 44, 441, 4675, 51129, 570401, 6451688, 73715212, 848793726, 9833394285, 114487194485, 1338411363535, 15700659542105, 184722993467063, 2178831068873601, 25756348168285379, 305061478075705411, 3619402085862708614, 43008294559624639777
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(5*n-k, n-2*k));

Formula

a(n) = [x^n] 1/((1-x+x^2) * (1-x)^(4*n)).
It appears that a(n) = Sum_{k = 0..n} binomial(3*n+2*k-1, k). - Peter Bala, Jun 04 2024
Showing 1-2 of 2 results.