cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385498 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(4*n,k).

Original entry on oeis.org

1, 6, 48, 408, 3564, 31626, 283548, 2560872, 23255964, 212101176, 1941110628, 17815257048, 163896843300, 1510891524252, 13952756564424, 129048895061208, 1195191116753436, 11082661017288264, 102877353868090080, 955912961224763232, 8889969049985302464
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(81/8)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(4*n, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(3*n)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(3*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 24*n*(3*n - 2)*(3*n - 1)*(139*n^3 - 366*n^2 + 143*n + 132)*a(n) = (588665*n^6 - 2281011*n^5 + 2262209*n^4 + 1245939*n^3 - 3359986*n^2 + 1877400*n - 322560)*a(n-1) - 648*(2*n - 3)*(4*n - 7)*(4*n - 5)*(139*n^3 + 51*n^2 - 172*n + 48)*a(n-2).
a(n) ~ 2^(8*n + 1/2) / (sqrt(Pi*n) * 3^(3*n - 1/2)). (End)
G.f.: g/((3-2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(12-6*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A386701 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(4*n,k).

Original entry on oeis.org

1, 1, 13, 103, 869, 7476, 65323, 577242, 5144949, 46167196, 416527828, 3774785983, 34336862435, 313330665532, 2866982877954, 26294890918308, 241665561294741, 2225104901535564, 20520648006149980, 189523353219338572, 1752680220372189364, 16227703263403842768
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-16/27)^n - Binomial[4*n, n]*(-1 + Hypergeometric2F1[1, -3*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(4*n, k));

Formula

a(n) = [x^n] 1/((1+2*x) * (1-x)^(3*n)).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 81*n*(3*n - 2)*(3*n - 1)*(612*n^3 - 2838*n^2 + 4354*n - 2209)*a(n) = 24*(165240*n^6 - 1019628*n^5 + 2493432*n^4 - 3068178*n^3 + 1984652*n^2 - 632900*n + 76545)*a(n-1) + 128*(2*n - 3)*(4*n - 7)*(4*n - 5)*(612*n^3 - 1002*n^2 + 514*n - 81)*a(n-2).
a(n) ~ 2^(8*n - 1/2) / (sqrt(Pi*n) * 3^(3*n + 1/2)). (End)
G.f.: g/((-2+3*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-8+9*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A371813 a(n) = Sum_{k=0..n} (-1)^k * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 1, 7, 40, 239, 1461, 9076, 57044, 361711, 2309467, 14827487, 95630272, 619111172, 4021011580, 26187682024, 170960159100, 1118406332655, 7330011083079, 48119501497909, 316354663355384, 2082573599282359, 13726029056757029, 90565080767425744
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] 1/((1+x) * (1-x)^(2*n)).
a(n) = binomial(3*n-1, n)*hypergeom([1, -n], [1-3*n], -1). - Stefano Spezia, Apr 07 2024
From Vaclav Kotesovec, Apr 07 2024: (Start)
Recurrence: 8*n*(2*n - 1)*(28*n^2 - 87*n + 67)*a(n) = 2*(1456*n^4 - 6008*n^3 + 8593*n^2 - 4949*n + 960)*a(n-1) + 3*(3*n - 5)*(3*n - 4)*(28*n^2 - 31*n + 8)*a(n-2).
a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n+2)). (End)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(3*n,k). - Seiichi Manyama, Jul 30 2025
G.f.: g/((-1+2*g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(3*n,k) * binomial(3*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^2*(-3+4*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 17 2025
Showing 1-3 of 3 results.