cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371818 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-2*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 19, 64, 224, 805, 2947, 10934, 40975, 154738, 587910, 2244681, 8605061, 33099767, 127687258, 493796454, 1913755319, 7431027611, 28902878561, 112585961052, 439148770623, 1715009647444, 6705019714554, 26240361155821, 102787164654287, 402972015656065
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/((1-x+x^3) * (1-x)^n).
a(n) = binomial(2*n, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [1/2-n, -n, 1+n], 27/4). - Stefano Spezia, Apr 07 2024

A371819 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-k+1,n-3*k).

Original entry on oeis.org

1, 3, 10, 34, 118, 417, 1497, 5447, 20047, 74493, 279054, 1052467, 3992204, 15216662, 58239175, 223688159, 861769598, 3328779906, 12887832493, 49998248601, 194315972151, 756406944446, 2948649839743, 11509316352548, 44976030493706, 175942932935325
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n-k+1, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^2+x^3) * (1-x)^n).
a(n) = binomial(1+2*n, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [-1-2*n, 1+n/2, (3+n)/2], -27/4). - Stefano Spezia, Apr 07 2024
Showing 1-2 of 2 results.