cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371826 a(n) = Sum_{k=0..floor(n/2)} n^k * binomial(2*n-k,n-2*k).

Original entry on oeis.org

1, 2, 8, 35, 170, 872, 4740, 26994, 161006, 1001009, 6476976, 43480373, 302250196, 2170406149, 16070240276, 122453910495, 958755921686, 7701233828576, 63381318474768, 533793776053926, 4595440308780620, 40400161269188412, 362367733795887848
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, n^k*binomial(2*n-k, n-2*k));

Formula

a(n) = [x^n] 1/((1-x-n*x^2) * (1-x)^n).
a(n) ~ exp(3*sqrt(n)/2) * n^(n/2) / 2. - Vaclav Kotesovec, Apr 07 2024

A371827 a(n) = Sum_{k=0..floor(n/3)} n^k * binomial(2*n-2*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 23, 94, 392, 1680, 7387, 33110, 150905, 698996, 3287550, 15685420, 75877427, 371994692, 1847450970, 9290557158, 47291312897, 243574276884, 1268915237141, 6683909556420, 35585631836229, 191433293140656, 1040197718292138, 5707318227692796
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[n^k Binomial[2n-2k,n-3k],{k,0,Floor[n/3]}],{n,30}]] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, n^k*binomial(2*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/((1-x-n*x^3) * (1-x)^n).
a(n) ~ exp(4*n^(2/3)/3 + 2*n^(1/3)/9) * n^(n/3) / 3. - Vaclav Kotesovec, Apr 07 2024
Showing 1-2 of 2 results.