cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371860 Decimal expansion of Integral_{x=0..1} 1 / sqrt(1 - x^3) dx.

Original entry on oeis.org

1, 4, 0, 2, 1, 8, 2, 1, 0, 5, 3, 2, 5, 4, 5, 4, 2, 6, 1, 1, 7, 5, 0, 1, 9, 0, 7, 9, 0, 5, 0, 2, 9, 4, 1, 3, 5, 4, 6, 3, 0, 2, 2, 2, 0, 5, 4, 2, 3, 9, 8, 6, 0, 9, 6, 1, 8, 1, 9, 9, 3, 9, 8, 7, 0, 7, 6, 2, 8, 4, 7, 6, 5, 9, 8, 1, 8, 0, 3, 2, 9, 6, 0, 7, 0, 8, 5, 2, 2, 6, 6, 4, 8, 5, 0, 2, 4, 7, 8, 4, 7, 0, 5, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.4021821053254542611750190790502941354630222...
		

Crossrefs

Decimal expansions of Integral_{x=0..1} 1 / sqrt(1 - x^k) dx: A019669 (k=2), this sequence (k=3), A085565 (k=4).

Programs

  • Mathematica
    RealDigits[Sqrt[Pi] Gamma[4/3]/Gamma[5/6], 10, 104][[1]]
    RealDigits[Gamma[1/3]^3 / (2^(4/3)*Sqrt[3]*Pi), 10, 104][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)

Formula

Equals sqrt(Pi) * Gamma(4/3) / Gamma(5/6).
Equals Gamma(1/3)^3 / (2^(4/3) * sqrt(3) * Pi). - Vaclav Kotesovec, Apr 09 2024
Equals A118292/2. - Hugo Pfoertner, Apr 09 2024