cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A372007 a(n) = product of those prime(k) such that floor(n/prime(k)) is even.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 6, 2, 5, 5, 30, 30, 105, 7, 14, 14, 21, 21, 210, 10, 55, 55, 330, 66, 429, 143, 2002, 2002, 15015, 15015, 30030, 910, 7735, 221, 1326, 1326, 12597, 323, 3230, 3230, 33915, 33915, 746130, 49742, 572033, 572033, 3432198, 490314, 1225785, 24035
Offset: 1

Views

Author

Michael De Vlieger, Apr 17 2024

Keywords

Comments

The only primes in the sequence are 2, 3, 5, and 7.

Examples

			a(1) = 1 since n = 1 is the empty product.
a(2) = 1 since for n = 2, floor(n/p) = floor(2/2) = 1 is odd.
a(3) = 1 since for n = 3 and p = 2, floor(3/2) = 1 is odd, and for p = 3, floor(3/3) = 1 is odd.
a(4) = 2 since for n = 4 and p = 2, floor(4/2) = 2 is even, but for p = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2.
a(5) = 2 since for n = 5, though floor(5/2) = 2 is even, floor(5/3) and floor(5/5) are both odd. Therefore, a(5) = 2.
a(8) = 6 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2*3 = 6, etc.
Table relating a(n) with b(n), s(n), and t(n), diagramming prime factors with "x" that produce a(n) or b(n), or powers of 2 with "x" that sum to s(n) or t(n). Sequences b(n) = A372000(n), c(n) = A034386(n), s(n) = A371907(n), t(n) = A371906(n), and v(n) = A357215(n) = s(n) + t(n). Column A represents prime factors of a(n), B same of b(n), while column S (at bottom) shows powers of 2 that sum to s(n), with T same for t(n). P(n) = A002110(n).
       [A]          [B] 11
   n   2357   a(n)  235713    b(n)  c(n)  s(n) t(n)   v(n)
  --------------------------------------------------------
   1   .        1   .           1   P(0)    0    0   2^0-1
   2   .        1   x           2   P(1)    0    1   2^1-1
   3   .        1   xx          6   P(2)    0    3   2^2-1
   4   x        2   .x          3   P(2)    1    2   2^2-1
   5   x        2   .xx        15   P(3)    1    6   2^3-1
   6   .x       3   x.x        10   P(3)    2    5   2^3-1
   7   .x       3   x.xx       70   P(4)    2   13   2^4-1
   8   xx       6   ..xx       35   P(4)    3   12   2^4-1
   9   x        2   .xxx      105   P(4)    1   14   2^4-1
  10   ..x      5   xx.x       42   P(4)    4   11   2^4-1
  11   ..x      5   xx.xx     462   P(5)    4   27   2^5-1
  12   xxx     30   ...xx      77   P(5)    7   24   2^5-1
  13   xxx     30   ...xxx   1001   P(6)    7   56   2^6-1
  14   .xxx   105   x...xx    286   P(6)   14   49   2^6-1
  15   ...x     7   xxx.xx   4290   P(6)    8   55   2^6-1
  16   x..x    14   .xx.xx   2145   P(6)    9   54   2^6-1
  --------------------------------------------------------
       0123         012345
     [S] 2^k        [T] 2^k
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Select[Prime@ Range@ PrimePi[n], EvenQ@ Quotient[n, #] &], {n, 51}] (* or *)
    Table[Product[Prime[i], {j, PrimePi[n]}, {i, 1 + PrimePi[Floor[n/(2  j + 1)]], PrimePi[Floor[n/(2  j)]]}], {n, 51}]
  • PARI
    a(n) = my(vp=primes([1, n])); vecprod(select(x->(((n\x) % 2)==0), vp)); \\ Michel Marcus, Apr 30 2024

Formula

a(n) = A034386(n) / A372000(n).
a(n) = Product_{k = 1..pi(n)} Product_{j = 1+floor(n/(2*k+1))..floor(n/(2*k))} prime(j), where pi(x) = A000720(n).
Showing 1-1 of 1 results.