A371928 T(n,k) is the total number of levels in all Dyck paths of semilength n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.
1, 1, 1, 1, 3, 1, 3, 5, 6, 1, 8, 15, 13, 11, 1, 23, 44, 43, 29, 20, 1, 71, 134, 138, 106, 62, 37, 1, 229, 427, 446, 371, 248, 132, 70, 1, 759, 1408, 1478, 1275, 941, 571, 283, 135, 1, 2566, 4753, 5017, 4410, 3437, 2331, 1310, 611, 264, 1, 8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1
Offset: 0
Examples
In the A000108(3) = 5 Dyck paths of semilength 3 there are 3 levels with 1 node, 5 levels with 2 nodes, 6 levels with 3 nodes, and 1 level with 4 nodes. 1 2 /\ 2 1 1 2 / \ 3 /\/\ 3 /\ 3 /\ 3 2 / \ 2 / \ 3 / \/\ 3 /\/ \ 4 /\/\/\ . So row 3 is [3, 5, 6, 1]. Triangle T(n,k) begins: 1; 1, 1; 1, 3, 1; 3, 5, 6, 1; 8, 15, 13, 11, 1; 23, 44, 43, 29, 20, 1; 71, 134, 138, 106, 62, 37, 1; 229, 427, 446, 371, 248, 132, 70, 1; 759, 1408, 1478, 1275, 941, 571, 283, 135, 1; 2566, 4753, 5017, 4410, 3437, 2331, 1310, 611, 264, 1; 8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1; ...
Links
- Alois P. Heinz, Rows n = 0..20, flattened
- Wikipedia, Counting lattice paths
Crossrefs
Programs
-
Maple
g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i) , i=0..degree(h)), b(x, y, h)))(p+z^y) end: b:= proc(x, y, p) option remember; `if`(y+2<=x, g(x-1, y+1, p), 0)+`if`(y>0, g(x-1, y-1, p), 0) end: T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(2*n, 0$2)): seq(T(n), n=0..10);
Comments