cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371943 Number of permutations that end with a consecutive pattern 123, and avoid consecutive patterns 123 and 213 elsewhere.

Original entry on oeis.org

0, 0, 0, 1, 2, 10, 28, 116, 388, 1588, 5960, 25168, 102856, 453608, 1985008, 9163360, 42486128, 205065136, 1000056928, 5035366208, 25689681760, 134588839648, 715328668736, 3889568161408, 21463055829568, 120839175460160, 690344333849728, 4015753752384256
Offset: 0

Views

Author

Yixin Lin, Apr 13 2024

Keywords

Comments

(This can be proved by observing the possible positions of n.)

Examples

			For n=0, 1, 2, there are no permutations ending with 123. Hence, a(0)=a(1)=a(2)=0. For n=3, a(3)=1 since 123 is the only permutation that ends with 123. For n=4, a(4)=2 with qualified permutations 3124, 4123. For n=5, a(5)=10 with qualified permutations 14235, 15234, 24135, 25134, 34125, 35124, 43125, 45123, 53124, 54123.
		

Crossrefs

Cf. A059480.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 0, `if`(n=3, 1,
          2*a(n-1)+2*(n-2)*(a(n-2)-a(n-3))-(n-2)*(n-3)*a(n-4)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 13 2024
  • Mathematica
    a[n_]:=a[n]=If[n<3, 0, If[n==3, 1, 2*a[n-1]+2*(n-2)*(a[n-2]-a[n-3])-(n-2)*(n-3)*a[n-4]]]; Table[a[n], {n,0,27}] (* Stefano Spezia, Apr 13 2024 *)
    RecurrenceTable[{a[n] == 2*a[n-1] + 2*(n-2)*(a[n-2] - a[n-3]) - (n-2)*(n-3)*a[n-4], a[0] == 0, a[1] == 0, a[2] == 0, a[3] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Apr 14 2024 *)
    nmax = 30; FullSimplify[CoefficientList[Series[-1 + E^(x*(2 + x)/2) * (1 + x) + E^((1 + x)^2/2) * Sqrt[Pi/2] * (2 + x)*(Erf[1/Sqrt[2]] - Erf[(1 + x)/Sqrt[2]]), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Apr 14 2024 *)
  • Python
    def aList(len):
        b = [0, 0, 0, 1, 4]
        a = [0, 0, 0, 1, 2]
        for i in range(4, len):
            b.append(b[i] + i * b[i - 1])
            a.append(a[i] + i * a[i - 1] + b[i])
        return a
    print(aList(27))

Formula

a(0)=a(1)=a(2)=0, a(3)=1, a(4)=2; a(n) = a(n-1)+(n-1)*a(n-2)+b(n-1), where b(n) = b(n-1)+(n-1)*b(n-2) is the same sequence as A059480, up to the first initial terms. Here, our b(n) has initial terms 0, 0, 0, 1, 4.
From Vaclav Kotesovec, Apr 14 2024: (Start)
a(n) ~ c * n^((n+1)/2) * exp(sqrt(n) - n/2), where c = exp(-1/4) / sqrt(2) - exp(1/4) * sqrt(Pi) * erfc(1/sqrt(2)) / 2 = 0.189615662815288097469466802437...
E.g.f.: -1 + exp(x*(2 + x)/2) * (1 + x) + exp((1 + x)^2/2) * sqrt(Pi/2) * (2 + x) * (erf(1/sqrt(2)) - erf((1 + x)/sqrt(2))). (End)