cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371963 a(n) is the sum of all valleys in the set of Catalan words of length n.

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 44, 209, 924, 3927, 16303, 66691, 270181, 1087371, 4356131, 17394026, 69289961, 275543036, 1094352236, 4342295396, 17218070066, 68239187876, 270351828476, 1070824260326, 4240695090452, 16792454677874, 66492351226050, 263285419856250, 1042540731845950
Offset: 0

Views

Author

Stefano Spezia, Apr 14 2024

Keywords

Examples

			a(4) = 1 because there is 1 Catalan word of length 4 with one valley: 0101.
a(5) = 8 because there are 8 Catalan words of length 5 with one valley: 00101, 01010, 01011, 01012, 01101, 01201, and 01212 (see Figure 9 at p. 14 in Baril et al.).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, 0,
          a(n-1)+binomial(2*n-3, n-4))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    CoefficientList[Series[(1 - 5x+5x^2-(1-3x+x^2)Sqrt[1-4x])/(2(1-x)x Sqrt[1-4x]),{x,0,28}],x]
  • Python
    from math import comb
    def A371963(n): return sum(comb((n-i<<1)-3,n-i-4) for i in range(n-3)) # Chai Wah Wu, Apr 15 2024

Formula

G.f.: (1-5*x+5*x^2-(1-3*x+x^2)*sqrt(1-4*x))/(2*(1-x)*x*sqrt(1-4*x)).
a(n) = Sum_{i=1..n-1} binomial(2*(n-i)-1,n-i-3).
a(n) ~ 2^(2*n)/(6*sqrt(Pi*n)).
a(n) - a(n-1) = A003516(n-2).