A371970 Exponents k such that the binary expansion of 3^k has an even number of ones.
1, 2, 3, 5, 6, 8, 9, 12, 14, 17, 18, 21, 23, 24, 25, 26, 27, 31, 32, 33, 35, 37, 38, 39, 40, 42, 44, 45, 47, 51, 52, 55, 57, 58, 59, 60, 61, 64, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 96, 99, 102, 104, 105, 106, 109, 112, 116, 127, 131, 132, 133, 134, 135, 136
Offset: 1
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= n-> is(add(i, i=Bits[Split](3^n))::even): select(q, [$0..150])[]; # Alois P. Heinz, Apr 24 2024
-
Mathematica
Select[Range[136], EvenQ@ DigitCount[3^#, 2, 1] &] (* Michael De Vlieger, Apr 24 2024 *)
-
PARI
is_a371970(k) = hammingweight(3^k)%2 == 0