cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371978 Number of ways of placing n non-attacking wazirs on a 3 X n board.

Original entry on oeis.org

1, 3, 8, 22, 61, 174, 504, 1478, 4374, 13035, 39062, 117585, 355279, 1076845, 3272692, 9969385, 30430982, 93055869, 285013326, 874193006, 2684778104, 8254967674, 25408703236, 78283452265, 241403160254, 745024894092, 2301051484006, 7111897305089, 21995136183906
Offset: 0

Views

Author

Alois P. Heinz, Apr 14 2024

Keywords

Examples

			a(2) = 8:
  +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+
  | W . | | W . | | W . | | . W | | . W | | . W | | . . | | . . |
  | . W | | . . | | . . | | W . | | . . | | . . | | W . | | . W |
  | . . | | W . | | . W | | . . | | W . | | . W | | . W | | W . |
  +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ +-----+ .
		

Crossrefs

Main diagonal of A371967.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1,
          add(`if`(Bits[And](j, l)>0, 0, expand(b(n-1, j)*
          x^add(i, i=Bits[Split](j)))), j=[0, 1, 2, 4, 5]))
        end:
    a:= n-> coeff(b(n, 0), x, n):
    seq(a(n), n=0..30);

Formula

a(n) = A371967(n,n).
From Vaclav Kotesovec, Apr 16 2024: (Start)
Recurrence: (n+1)*(72*n^4 - 700*n^3 + 2288*n^2 - 2803*n + 796)*a(n) = 2*(144*n^5 - 1328*n^4 + 3814*n^3 - 3083*n^2 - 1479*n + 1194)*a(n-1) - 2*(72*n^5 - 700*n^4 + 2050*n^3 - 1979*n^2 + 409*n + 16)*a(n-2) - 4*(36*n^5 - 368*n^4 + 1437*n^3 - 2421*n^2 + 1398*n + 95)*a(n-3) - (72*n^5 - 772*n^4 + 2404*n^3 - 1365*n^2 - 4749*n + 5704)*a(n-4) + 2*(72*n^5 - 808*n^4 + 2858*n^3 - 3067*n^2 - 1494*n + 2666)*a(n-5) - (n-6)*(72*n^4 - 412*n^3 + 620*n^2 - 39*n - 347)*a(n-6).
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = (188 + 12*sqrt(93))^(1/3)/6 + 14/(3*(188 + 12*sqrt(93))^(1/3)) + 4/3 and c = 11/6 + (1465336244224 - 5597165568*sqrt(93))^(1/3)/5952 + ((23080523 + 88161*sqrt(93))/2)^(1/3) / (12*31^(2/3)). (End)