cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372004 G.f. A(x) satisfies A(x) = ( 1 + 9*x*A(x)*(1 + x*A(x)) )^(1/3).

Original entry on oeis.org

1, 3, 3, 0, 9, 0, -63, 189, 0, -1944, 6399, 0, -72009, 245430, 0, -2921832, 10184130, 0, -125775585, 445134690, 0, -5641620192, 20188568790, 0, -260832419406, 941254831539, 0, -12342425759136, 44833549152825, 0, -594857401230510, 2172276845159733, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2024

Keywords

Crossrefs

Programs

  • Maple
    A372004 := proc(n)
        add(9^k*binomial((n+1)/3,k)*binomial(k,n-k),k=0..n)/(n+1) ;
    end proc:
    seq(A372004(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
  • PARI
    a(n) = sum(k=0, n, 9^k*binomial(n/3+1/3, k)*binomial(k, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 9^k * binomial(n/3+1/3,k) * binomial(k,n-k).
a(3*n+2) = 0 for n > 0.
a(n) = 9^n*binomial((n+1)/3, n)*hypergeom([(1-n)/2, -n/2], [2*(2-n)/3], 4/9)/(n+1). - Stefano Spezia, Apr 18 2024
D-finite with recurrence n*(n-1)*(2*n-11)*a(n) -108*(n-5)*(n-3)^2*a(n-3) -135*(n-5)*(n-8)*(2*n-5)*a(n-6)=0. - R. J. Mathar, Apr 22 2024

A372006 G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)*(1 + x*A(x)) )^(1/5).

Original entry on oeis.org

1, 5, -20, 100, 0, -9625, 169875, -1933125, 14025625, 0, -2065744375, 41575056250, -523670743750, 4119815531250, 0, -684944792812500, 14442398472421875, -189324209836328125, 1541918426557031250, 0, -271410262779871875000, 5860693797318871093750
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 25^k*binomial(n/5+1/5, k)*binomial(k, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 25^k * binomial(n/5+1/5,k) * binomial(k,n-k).
a(5*n+4) = 0 for n >= 0.
a(n) = 25^n*binomial((n+1)/5, n)*hypergeom([(1-n)/2, -n/2], [(6-4*n)/5], 4/25)/(n+1). - Stefano Spezia, Apr 18 2024

A372020 G.f. A(x) satisfies A(x) = ( 1 + 16*x*A(x)/(1 - x*A(x)) )^(1/4).

Original entry on oeis.org

1, 4, -4, 4, 156, -1212, 5628, 196, -251620, 2500484, -12608772, 16004, 671151260, -7039845180, 37258827516, 1585476, -2133978944740, 23052545651460, -125166709730820, 174117124, 7480512144282780, -82265332158299580, 453899597102224380, 20390254020
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 16^k*binomial(n/4+1/4, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 16^k * binomial(n/4+1/4,k) * binomial(n-1,n-k).
Showing 1-3 of 3 results.