cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372018 G.f. A(x) satisfies A(x) = ( 1 + 4*x*A(x)/(1 - x*A(x)) )^(1/2).

Original entry on oeis.org

1, 2, 4, 10, 30, 98, 336, 1194, 4360, 16258, 61644, 236938, 921102, 3615330, 14307312, 57024426, 228701646, 922283522, 3737497980, 15212318730, 62160993642, 254909413218, 1048717979424, 4327273358250, 17903826642780, 74260741616514, 308724721176676
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2024

Keywords

Crossrefs

Programs

  • Maple
    A372018 := proc(n)
        add(4^k*binomial((n+1)/2,k)*binomial(n-1,k-1),k=0..n) ;
        %/(n+1) ;
    end proc:
    seq(A372018(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(n/2+1/2, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 4^k * binomial(n/2+1/2,k) * binomial(n-1,n-k).
D-finite with recurrence n*(n+1)*(n-2)*a(n) -6*(n-2)*(3*n^2-6*n+1)*a(n-2) -27*n*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
Conjecture: a(2n+1) = 2*A371364(). - R. J. Mathar, Apr 22 2024

A372020 G.f. A(x) satisfies A(x) = ( 1 + 16*x*A(x)/(1 - x*A(x)) )^(1/4).

Original entry on oeis.org

1, 4, -4, 4, 156, -1212, 5628, 196, -251620, 2500484, -12608772, 16004, 671151260, -7039845180, 37258827516, 1585476, -2133978944740, 23052545651460, -125166709730820, 174117124, 7480512144282780, -82265332158299580, 453899597102224380, 20390254020
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 16^k*binomial(n/4+1/4, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 16^k * binomial(n/4+1/4,k) * binomial(n-1,n-k).

A372110 G.f. A(x) satisfies A(x) = ( (1 - x*A(x))/(1 - 10*x*A(x)) )^(1/3).

Original entry on oeis.org

1, 3, 30, 381, 5457, 84000, 1356726, 22680705, 389100000, 6811276449, 121177168266, 2184600000000, 39822674320065, 732762138176436, 13592289000000000, 253896500477864361, 4771765283550516435, 90167361600000000000, 1712019315455953465026
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^k*binomial(n/3+k-2/3, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 9^k * binomial(n/3+k-2/3,k) * binomial(n-1,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378552(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - 9*x/(1-x))^((n+1)/3).
G.f.: (1/x) * Series_Reversion( x*(1 - 9*x/(1-x))^(1/3) ). (End)
Showing 1-3 of 3 results.