cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372109 G.f. A(x) satisfies A(x) = ( (1 - x*A(x))/(1 - 5*x*A(x)) )^(1/2).

Original entry on oeis.org

1, 2, 12, 90, 758, 6850, 64904, 636250, 6399120, 65661250, 684665828, 7233956250, 77278356246, 833291781250, 9057750917944, 99144375156250, 1091857567068742, 12089416175781250, 134501879883249300, 1502857085910156250, 16857310306553767026
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(n/2+k-1/2, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 4^k * binomial(n/2+k-1/2,k) * binomial(n-1,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378551(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - 4*x/(1-x))^((n+1)/2).
G.f.: (1/x) * Series_Reversion( x*(1 - 4*x/(1-x))^(1/2) ). (End)

A378552 a(n) = Sum_{k=0..n} 9^k * binomial(n/3+k-1,k) * binomial(n-1,n-k).

Original entry on oeis.org

1, 3, 51, 900, 16455, 307833, 5850000, 112445112, 2180050215, 42552000000, 835075676361, 16461248223588, 325696500000000, 6464447754891285, 128654307202482420, 2566472490000000000, 51302899404879842343, 1027391467409893403745, 20607804108000000000000
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[1/(1 - 9*x/(1-x))^(n/3),{x,0,n}]; Array[a,19,0] (* Stefano Spezia, Nov 30 2024 *)
  • PARI
    a(n) = sum(k=0, n, 9^k*binomial(n/3+k-1, k)*binomial(n-1, n-k));

Formula

a(n) = [x^n] 1/(1 - 9*x/(1-x))^(n/3).
Showing 1-2 of 2 results.