cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372110 G.f. A(x) satisfies A(x) = ( (1 - x*A(x))/(1 - 10*x*A(x)) )^(1/3).

Original entry on oeis.org

1, 3, 30, 381, 5457, 84000, 1356726, 22680705, 389100000, 6811276449, 121177168266, 2184600000000, 39822674320065, 732762138176436, 13592289000000000, 253896500477864361, 4771765283550516435, 90167361600000000000, 1712019315455953465026
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^k*binomial(n/3+k-2/3, k)*binomial(n-1, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 9^k * binomial(n/3+k-2/3,k) * binomial(n-1,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378552(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - 9*x/(1-x))^((n+1)/3).
G.f.: (1/x) * Series_Reversion( x*(1 - 9*x/(1-x))^(1/3) ). (End)

A378551 a(n) = Sum_{k=0..n} 4^k * binomial(n/2+k-1,k) * binomial(n-1,n-k).

Original entry on oeis.org

1, 2, 20, 206, 2200, 24062, 267500, 3009050, 34150000, 390265190, 4484762500, 51771831146, 599921125000, 6974108163778, 81297715937500, 949957147566086, 11123368187500000, 130487420114543110, 1533247106445312500, 18042303960492212810, 212590835968046875000
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[ 1/(1 - 4*x/(1-x))^(n/2),{x,0,n}]; Array[a,21,0] (* Stefano Spezia, Nov 30 2024 *)
  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(n/2+k-1, k)*binomial(n-1, n-k));

Formula

a(n) = [x^n] 1/(1 - 4*x/(1-x))^(n/2).
Showing 1-2 of 2 results.