cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372164 E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(5/2) * (1 + x * A(x)) ).

Original entry on oeis.org

1, 2, 28, 746, 30344, 1668762, 116000044, 9760665434, 964821252528, 109605653026802, 14072453189095124, 2015280776336738418, 318501367837803765640, 55067060355743834423690, 10339257411931121356190652, 2095051036885575920328492938, 455698493422117961626699815776
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=2) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(s*k, n-k)/k!);

Formula

E.g.f.: A(x) = B(x)^2 where B(x) is the e.g.f. of A372182.
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(s*k,n-k)/k!.

A372179 E.g.f. A(x) satisfies A(x) = exp( 2 * x * A(x)^(1/2) / (1 - x * A(x)) ).

Original entry on oeis.org

1, 2, 12, 134, 2232, 49762, 1394236, 47117982, 1866217296, 84810000194, 4350808646964, 248736339576958, 15682868019616408, 1081153176108929250, 80906410246285190508, 6531880775140905838238, 565912845564569155284384, 52373575389612727174282882
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=1, u=2) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(n+(s-1)*k-1, n-k)/k!);

Formula

E.g.f.: A(x) = B(x)^2 where B(x) is the e.g.f. of A365012.
If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(n+(s-1)*k-1,n-k)/k!.

A372183 E.g.f. A(x) satisfies A(x) = exp( x * A(x)^5 / (1 - x * A(x)^2) ).

Original entry on oeis.org

1, 1, 13, 340, 13713, 752516, 52372051, 4421017602, 438996446545, 50142716621848, 6477138263806011, 933667525669154486, 148582199464010331289, 25874197258988478298068, 4894174597530612144797299, 999256176035969437218129946, 219035687330062179838536993441
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=1, t=5, u=2) = r*n!*sum(k=0, n, (t*k+u*(n-k)+r)^(k-1)*binomial(n+(s-1)*k-1, n-k)/k!);

Formula

If e.g.f. satisfies A(x) = exp( r*x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s ), then a(n) = r * n! * Sum_{k=0..n} (t*k+u*(n-k)+r)^(k-1) * binomial(n+(s-1)*k-1,n-k)/k!.
Showing 1-3 of 3 results.