A372167 Irregular triangle read by rows where T(n,k) is the number of simple graphs covering n vertices with exactly k triangles, 0 <= k <= binomial(n,3).
1, 0, 1, 3, 1, 22, 12, 6, 0, 1, 237, 220, 165, 70, 35, 30, 0, 10, 0, 0, 1, 3961, 5460, 5830, 4140, 2805, 2112, 1230, 720, 600, 180, 230, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 99900, 191975, 269220, 272055, 240485, 207095, 166005, 121530, 98770, 65905, 48503, 37065, 20055, 17570, 11445, 6552, 4410, 3570, 1680, 1785, 147, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 3 1 22 12 6 0 1 237 220 165 70 35 30 0 10 0 0 1 ... Row k = 4 counts the following graphs: 12-34 12-13-14-23 12-13-14-23-24 . 12-13-14-23-24-34 13-24 12-13-14-24 12-13-14-23-34 14-23 12-13-14-34 12-13-14-24-34 12-13-14 12-13-23-24 12-13-23-24-34 12-13-24 12-13-23-34 12-14-23-24-34 12-13-34 12-14-23-24 13-14-23-24-34 12-14-23 12-14-24-34 12-14-34 12-23-24-34 12-23-24 13-14-23-34 12-23-34 13-14-24-34 12-24-34 13-23-24-34 13-14-23 14-23-24-34 13-14-24 13-23-24 13-23-34 13-24-34 14-23-24 14-23-34 14-24-34 12-13-24-34 12-14-23-34 13-14-23-24
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..340 (rows 0..10)
- Gus Wiseman, All simple graphs covering {1,2,3,4} grouped by number of triangles.
Programs
-
Mathematica
cys[y_]:=Select[Subsets[Union@@y,{3}], MemberQ[y,{#[[1]],#[[2]]}] && MemberQ[y,{#[[1]],#[[3]]}] && MemberQ[y,{#[[2]],#[[3]]}]&]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cys[#]]==k&]], {n,0,5},{k,0,Binomial[n,3]}]
Formula
Inverse binomial transform of columns of A372170.
Extensions
a(42) onwards from Andrew Howroyd, Dec 29 2024