A372256
a(n) = (n-1)!/2^floor((n-1)/2) + floor((n-1)/2).
Original entry on oeis.org
1, 1, 2, 4, 8, 32, 93, 633, 2524, 22684, 113405, 1247405, 7484406, 97297206, 681080407, 10216206007, 81729648008, 1389404016008, 12504636144009, 237588086736009, 2375880867360010, 49893498214560010, 548828480360160011, 12623055048283680011, 151476660579404160012
Offset: 1
Consider a five-card trick, where the assistant gets four cards from a deck and is told which card to hide. Moreover, the deck has a duplicate of each card. In the worst case scenario, the assistant gets two duplicates and has to hide the other card. There are six different ways to arrange two pairs of cards. Thus, the assistant can signal a number 1 through 6. The hidden card can't take a value of the cards on the table, so the maximum number of distinct values is 8. Thus a(5) = 8.
- Michael Kleber and Ravi Vakil, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, Samuel Tsui, and Tanya Khovanova, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024.
A372264
a(n) = n! - n^2 + 2n - 1.
Original entry on oeis.org
1, 1, 2, 15, 104, 695, 5004, 40271, 362816, 3628719, 39916700, 479001479, 6227020656, 87178291031, 1307674367804, 20922789887775, 355687428095744, 6402373705727711, 121645100408831676, 2432902008176639639, 51090942171709439600, 1124000727777607679559, 25852016738884976639516
Offset: 1
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 19.
- Michael Kleber and Ravi Vakil, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
-
Table[(n! - n^2 + 2 n - 1), {n, 1, 25}]
-
from math import factorial
def A372264(n): return factorial(n)-(n-1)**2 # Chai Wah Wu, May 02 2024
A372265
a(n) = floor((2*n - 3 + sqrt(1 + 4*n!))/2).
Original entry on oeis.org
0, 2, 4, 7, 14, 31, 76, 207, 609, 1913, 6327, 21896, 78922, 295272, 1143549, 4574158, 18859692, 80014850, 348776594, 1559776287, 7147792837, 33526120102, 160785623566, 787685471345, 3938427356638, 20082117944270, 104349745809099, 552166953567254, 2973510046012938, 16286585271694984
Offset: 1
For n=3, the equation on the deck size becomes the following: d-1 choose 2 can't exceed 3. Thus, a(3) = 4.
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 21.
- Michael Kleber and Ravi Vakil, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
A372266
a(n) = floor((2*n - 3 + sqrt(1 + 8*(n - 2)!))/2).
Original entry on oeis.org
2, 3, 4, 7, 11, 21, 44, 107, 292, 861, 2704, 8946, 30964, 111611, 417574, 1617219, 6468832, 26671628, 113158082, 493244584, 2205856773, 10108505566, 47413093736, 227385209476, 1113955476453, 5569777382171, 28400403557955, 147572825753404, 780881994429038
Offset: 2
For n=3, the constraint on the deck size becomes: binomial(d-1, 2) can't exceed 1!=1. Thus a(3) = 3.
- Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 20.
- Michael Kleber, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
Showing 1-4 of 4 results.
Comments