A372261 Number T(n,k,j) of acyclic orientations of the complete tripartite graph K_{n,k,j}; triangle of triangles T(n,k,j), n>=0, k=0..n, j=0..k, read by rows.
1, 1, 2, 6, 1, 4, 18, 14, 78, 426, 1, 8, 54, 46, 330, 2286, 230, 1902, 15402, 122190, 1, 16, 162, 146, 1374, 12090, 1066, 10554, 101502, 951546, 6902, 76110, 822954, 8724078, 90768378, 1, 32, 486, 454, 5658, 63198, 4718, 57054, 657210, 7290942, 41506, 525642, 6495534, 78463434, 928340190
Offset: 0
Examples
Triangle of triangles T(n,k,j) begins: 1; ; 1; 2, 6; ; 1; 4, 18; 14, 78, 426; ; 1; 8, 54; 46, 330, 2286; 230, 1902, 15402, 122190; ; ...
Links
- Alois P. Heinz, Rows n = 0..40, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add( expand(x*g(n-j))*binomial(n-1, j-1), j=1..n)) end: T:= proc() option remember; local q, l, b; q, l, b:= -1, [args], proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)* (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j])) end; abs(b(0, nops(l))) end: seq(seq(seq(T(n, k, j), j=0..k), k=0..n), n=0..5);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; T[n_, k_, j_] := T[n, k, j] = Module[{q = -1, l = {n, k, j}, b}, b[n0_, j0_] := b[n0, j0] = If[j0 == 1, Product[q - i, {i, 0, n0 - 1}]* (q - n0)^n, Sum[b[n0 + m, j0 - 1]*Coefficient[g[l[[j0]]], x, m], {m, 0, l[[j0]]}]]; Abs[b[0, 3]]]; Table[Table[Table[T[n, k, j], {j, 0, k}], {k, 0, n}], {n, 0, 5}] // Flatten (* Jean-François Alcover, Jun 14 2024, after Alois P. Heinz *)
Comments