cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372285 Array read by upward antidiagonals: A(n,k) is the number of terms of A086893 in the interval [b(n, k), b(n+1, k)], n,k >= 1, where b = A372282.

Original entry on oeis.org

5, 9, 4, 17, 9, 7, 33, 17, 13, 2, 65, 33, 25, 5, 4, 129, 65, 49, 10, 6, 3, 257, 129, 97, 22, 13, 6, 6, 513, 257, 193, 45, 26, 14, 13, 3, 1025, 513, 385, 89, 54, 29, 25, 4, 4, 2049, 1025, 769, 177, 109, 57, 49, 9, 10, 3, 4097, 2049, 1537, 353, 217, 113, 97, 22, 21, 6, 9, 8193, 4097, 3073, 705, 433, 225, 193, 45, 41, 13, 17, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2024

Keywords

Examples

			Array begins:
n\k|    1     2      3     4     5     6      7     8      9    10     11
---+----------------------------------------------------------------------
1  |    5,    4,     7,    2,    4,    3,     6,    3,     4,    3,     9,
2  |    9,    9,    13,    5,    6,    6,    13,    4,    10,    6,    17,
3  |   17,   17,    25,   10,   13,   14,    25,    9,    21,   13,    33,
4  |   33,   33,    49,   22,   26,   29,    49,   22,    41,   26,    65,
5  |   65,   65,    97,   45,   54,   57,    97,   45,    81,   54,   129,
6  |  129,  129,   193,   89,  109,  113,   193,   89,   161,  109,   257,
7  |  257,  257,   385,  177,  217,  225,   385,  177,   321,  217,   513,
8  |  513,  513,   769,  353,  433,  449,   769,  353,   641,  433,  1025,
9  | 1025, 1025,  1537,  705,  865,  897,  1537,  705,  1281,  865,  2049,
10 | 2049, 2049,  3073, 1409, 1729, 1793,  3073, 1409,  2561, 1729,  4097,
11 | 4097, 4097,  6145, 2817, 3457, 3585,  6145, 2817,  5121, 3457,  8193,
12 | 8193, 8193, 12289, 5633, 6913, 7169, 12289, 5633, 10241, 6913, 16385,
etc.
The count includes also the starting and/or ending point, if either of them is a term of A086893. For example, when going from A372282(2,1) = 21 to A372282(3,1) = 5461, we count terms A086893(5..13) = [21, 53, 85, 213, 341, 853, 1365, 3413, 5461], nine in total, therefore A(2,1) = 9.
When going from A371102(1,8) = 15 to A371102(2,8) = 93, we count terms 21, 53, 85 of A086893 in the interval [15, 93], therefore A(1,8) = 3.
		

Crossrefs

Programs

  • PARI
    up_to = 78;
    A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3); \\ From A086893
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372282sq(n,k) = if(1==n,2*k-1,A371094(A372282sq(n-1,k)));
    A372286(n) = { my(u=A371094(n), k1); for(i=1,oo,if(A086893(i)>=n,k1=i-1; break)); for(i=k1,oo,if(A086893(i)>u,return(i-k1-1))); };
    A372285sq(n,k) = A372286(A372282sq(n,k));
    A372285list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372285sq((a-(col-1)),col))); (v); };
    v372285 = A372285list(up_to);
    A372285(n) = v372285[n];

Formula

A(n, k) = A372286(A372282(n, k)).