A372289 a(n) = n*2^e + (4^e - 1)/3, where e is the 2-adic valuation of n.
1, 5, 3, 21, 5, 13, 7, 85, 9, 21, 11, 53, 13, 29, 15, 341, 17, 37, 19, 85, 21, 45, 23, 213, 25, 53, 27, 117, 29, 61, 31, 1365, 33, 69, 35, 149, 37, 77, 39, 341, 41, 85, 43, 181, 45, 93, 47, 853, 49, 101, 51, 213, 53, 109, 55, 469, 57, 117, 59, 245, 61, 125, 63, 5461
Offset: 1
Keywords
Examples
For n=4, "100" in binary, when we substitute 01's for the two trailing 0's, we obtain 21, "10101" in binary, therefore a(4) = 21. For n=11, "1011" in binary, there are no trailing 0's, and thus no changes, therefore a(11) = 11.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..1000, May 08 2025
- Index entries for sequences related to binary expansion of n
Programs
-
Maple
a := proc(n) padic[ordp](n, 2): n*2^% + ((2^%)^2 - 1)/3 end: seq(a(n), n = 1..64); # Peter Luschny, Apr 27 2024
-
Mathematica
a[n_]:=n*(2^IntegerExponent[n, 2]) + ((4^IntegerExponent[n, 2]) - 1)/3; Array[a, 75] (* Stefano Spezia, Apr 26 2024 *)
-
PARI
A372289(n) = { my(e=valuation(n,2)); n*2^e + (4^e-1)/3 }
-
Python
def A372289(n): return (n<<(e:=(~n & n-1).bit_length()))+((1<<(e<<1))-1)//3 # Chai Wah Wu, Apr 26 2024
Formula
For n >= 0, a(2n+1) = 2n+1.
Comments