cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372290 Numbers that occur in the odd bisection of A371094.

Original entry on oeis.org

21, 45, 69, 93, 117, 141, 165, 189, 213, 237, 261, 285, 309, 333, 341, 357, 381, 405, 429, 453, 477, 501, 525, 549, 573, 597, 621, 645, 669, 693, 717, 725, 741, 765, 789, 813, 837, 861, 885, 909, 933, 957, 981, 1005, 1029, 1053, 1077, 1101, 1109, 1125, 1149, 1173, 1197, 1221, 1245, 1269, 1293, 1317, 1341, 1365, 1389
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2024

Keywords

Comments

Numbers that occur in array A371100.

Examples

			21 is present because A371094(1) = A371094(3) = 21.
45 is present because A371094(7) = 45.
87381 is present because A371094(85) = A371094(213) = A371094(7281) = A371094(14563) = 87381.
		

Crossrefs

Union of A372291 and A372292.
Cf. A102603 (subsequence), A371094, A371100.

Programs

  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    isA372290(n) = if(!(n%2),0,forstep(k=1,n,2,if(A371094(k)==n,return(1))); (0));
    
  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372290list(up_to_n) = { my(v=vector((1+up_to_n)/2), x, lista=List([])); forstep(k=1,up_to_n,2,x=A371094(k); if(x <= up_to_n, v[(x+1)/2]++)); for(i=1,(1+up_to_n)/2,if(v[i]>0, listput(lista,i+i-1))); Vec(lista); };