A372295 Composite numbers k such that k's prime factors are distinct, the digits of k are in nonincreasing order while the digits of the concatenation of k's ascending order prime factors are in nondecreasing order.
6, 10, 21, 30, 42, 70, 74, 94, 111, 210, 222, 553, 554, 611, 851, 871, 885, 998, 5530, 5554, 7751, 8441, 8655, 9998, 85511, 95554, 99998, 9999998, 77744411, 5555555554, 7777752221, 8666666655, 755555555554, 95555555555554, 999999999999998, 5555555555555554, 8666666666666655, 755555555555555554
Offset: 1
Examples
77744411 is a term as 77744411 = 233 * 333667 which has distinct prime factors, 77744411 has nonincreasing digits while its prime factor concatenation "233333667" has nondecreasing digits.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..40
Programs
-
Python
from sympy import factorint, isprime from itertools import count, islice, combinations_with_replacement as mc def nd(s): return s == "".join(sorted(s)) def bgen(d): yield from ("".join(m) for m in mc("9876543210", d) if m[0]!="0") def agen(): # generator of terms for d in count(1): out = set() for s in bgen(d): t = int(s) if t < 4 or isprime(t): continue f = factorint(t) if len(f) < sum(f.values()): continue if nd("".join(str(p) for p in f)): out.add(t) yield from sorted(out) print(list(islice(agen(), 29))) # Michael S. Branicky, Apr 26 2024
Extensions
a(33)-a(38) from Michael S. Branicky, Apr 26 2024
Comments