cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372305 a(n) = Product_{k=2..n-1} MultiplicativeOrder(k,n) where gcd(k,n)=1.

Original entry on oeis.org

1, 1, 2, 2, 32, 2, 648, 8, 648, 32, 12500000, 8, 214990848, 648, 2048, 2048, 562949953421312, 648, 11712917736940032, 2048, 3359232, 12500000, 1377791989621882898843648, 128, 5120000000000000000, 214990848, 11712917736940032
Offset: 1

Views

Author

DarĂ­o Clavijo, Apr 25 2024

Keywords

Comments

All terms are even for n>=3.

Crossrefs

Row products of triangle A216327.

Programs

  • Mathematica
    Table[Times @@ Map[MultiplicativeOrder[#, n] &, Select[Range[2, n - 1], CoprimeQ[n, #] &]], {n, 2, 27}] (* Michael De Vlieger, Apr 25 2024 *)
  • PARI
    a(n) = prod(k=2, n-1, if (gcd(k,n)==1, znorder(Mod(k,n)), 1)); \\ Michel Marcus, Apr 26 2024
  • Python
    from sympy import n_order, gcd, prod
    a = lambda n: prod(n_order(k,n) for k in range(2, n) if gcd(k,n)==1)
    print([a(n) for n in range(1, 28)])