cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372307 Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 9, 10, 1, 0, 1, 1, 44, 297, 56, 1, 0, 1, 1, 265, 13756, 13833, 346, 1, 0, 1, 1, 1854, 925705, 6699824, 748521, 2252, 1, 0, 1, 1, 14833, 85394646, 5691917785, 3993445276, 44127009, 15184, 1, 0, 1
Offset: 0

Views

Author

Jeremy Tan, Apr 26 2024

Keywords

Comments

A deck has k suits of n cards each. The deck is shuffled and dealt into k hands of n cards each. A match occurs for every card in the i-th hand of suit i. T(n,k) is the number of ways of achieving no matches. The probability of no matches is T(n,k)/((n*k)!/n!^k).
T(n,k) is the maximal number of totally mixed Nash equilibria in games of k players, each with n+1 pure options.

Examples

			Square array T(n,k) begins:
  1, 1, 1,      1,            1,                   1, ...
  1, 0, 1,      2,            9,                  44, ...
  1, 0, 1,     10,          297,               13756, ...
  1, 0, 1,     56,        13833,             6699824, ...
  1, 0, 1,    346,       748521,          3993445276, ...
  1, 0, 1,   2252,     44127009,       2671644472544, ...
  1, 0, 1,  15184,   2750141241,    1926172117389136, ...
  1, 0, 1, 104960, 178218782793, 1463447061709156064, ...
		

Crossrefs

Columns 0-4 give A000012, A000007, A000012, A000172, A371252.
Main diagonal gives A375778.

Programs

  • Maple
    A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Aug 27 2024
  • Mathematica
    Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten
  • Python
    # See link.

Formula

T(n,k) = (-1)^(n*k) * Integral_{x=0..oo} exp(-x)*L_n(x)^k dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).
T(n,k) ~ A089759(n,k)/exp(n).