cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372443 The n-th iterate of 27 with Reduced Collatz-function R, which gives the odd part of 3n+1.

Original entry on oeis.org

27, 41, 31, 47, 71, 107, 161, 121, 91, 137, 103, 155, 233, 175, 263, 395, 593, 445, 167, 251, 377, 283, 425, 319, 479, 719, 1079, 1619, 2429, 911, 1367, 2051, 3077, 577, 433, 325, 61, 23, 35, 53, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 01 2024

Keywords

Crossrefs

Column 14 of A372283, Row 13 of A256598 (but only up to the first 1).
Row 1 of A372560.
From term 47 to the first 1 same as A088593.
Sequences derived from this one or related to:
A372445 column index of a(n) in array A257852,
A372362 the 2-adic valuation of 1 + 3*a(n), equal to row index of a(n) in array A257852,
A372447 binary lengths minus 1,
A372446 a(n) xored with the term of A086893 having the same binary length,
A372453 a(n) minus the term of A086893 having the same binary length.

Programs

  • PARI
    R(n) = { n = 1+3*n; n>>valuation(n, 2); };
    A372443(n) = { my(x=27); while(n, x=R(x); n--); (x); };

Formula

a(0) = 27; for n > 0, a(n) = R(a(n-1)), where R(n) = (3*n+1)/2^A371093(n) = A000265(3*n+1).
For n > 0, a(n) = R(A372444(n-1)) = A000265(1+3*A372444(n-1)).

A351122 Irregular triangle read by rows in which row n lists the number of divisions by 2 after tripling steps in the Collatz 3x+1 trajectory of 2n+1 until it reaches 1.

Original entry on oeis.org

1, 4, 4, 1, 1, 2, 3, 4, 2, 1, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 1, 1, 1, 5, 4, 2, 3, 4, 1, 3, 1, 2, 3, 4, 6, 1, 1, 5, 4, 2, 1, 3, 1, 2, 3, 4, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 2, 2, 4, 3, 1, 1, 5, 4, 3, 1, 2, 3, 4
Offset: 1

Views

Author

Flávio V. Fernandes, Feb 01 2022

Keywords

Examples

			Triangle starts at T(1,0):
   n\k   0   1   2   3   4   5   6   7   8 ...
   1:    1   4
   2:    4
   3:    1   1   2   3   4
   4:    2   1   1   2   3   4
   5:    1   2   3   4
   6:    3   4
   7:    1   1   1   5   4
   8:    2   3   4
   9:    1   3   1   2   3   4
  10:    6
  11:    1   1   5   4
  12:    2   1   3   1   2   3   4
  13:    1   2   1   1   1   1   2   2   1   2   1   1   2  ... (see A372362)
  ...
For n=6, the trajectory of 2*n+1 = 13 is as follows. The tripling steps ("=>") are followed by runs of 3 and then 4 halvings ("->"), so row n=6 is 3, 4.
  13  =>  40 -> 20 -> 10 -> 5  =>  16 -> 8 -> 4 -> 2 -> 1
    triple   \------------/   triple  \---------------/
               3 halvings                4 halvings
Runs of halvings are divisions by 2^T(n,k). Row n=11 is 1, 1, 5, 4 and its steps starting from 2*n+1 = 23 reach 1 by a nested expression
  (((((((23*3+1)/2^1)*3+1)/2^1)*3+1)/2^5)*3+1)/2^4 = 1.
		

Crossrefs

Cf. A075680 (row lengths), A166549 (row sums), A351123 (row partial sums).
Cf. A256598.
Cf. A020988 (where row is [2*n]).
Cf. A198584 (where row length is 2), A228871 (where row is [1, x]).
Cf. A372362 (row 13, the first 41 terms).

Programs

  • PARI
    row(n) = my(m=2*n+1, list=List()); while (m != 1, if (m%2, m = 3*m+1, my(nb = valuation(m,2)); m/=2^nb; listput(list, nb));); Vec(list); \\ Michel Marcus, Jul 18 2022

Formula

T(n,k) = log_2( (3*A256598(n,k)+1) / A256598(n,k+1) ).

Extensions

Corrected by Michel Marcus, Jul 18 2022
Showing 1-2 of 2 results.