A372402 Position of 2310^n among 11-smooth numbers A051038.
1, 283, 3847, 20996, 74228, 203084, 469053, 960396, 1797086, 3135610, 5173909, 8156188, 12377846, 18190320, 26005929, 36302854, 49629820, 66611231, 87951744, 114441450, 146960432, 186483973, 234087084, 290949702, 358361266, 437725888, 530566933, 638532124, 763398291, 907076258
Offset: 0
Keywords
Programs
-
Mathematica
Table[ Sum[Floor@ Log[11, 2310^n/(2^i*3^j*5^k*7^m)] + 1, {i, 0, Log[2, 2310^n]}, {j, 0, Log[3, 2310^n/2^i]}, {k, 0, Log[5, 2310^n/(2^i*3^j)]}, {m, 0, Log[7, 2310^n/(2^i*3^j*5^k)]}], {n, 0, 8}]
-
Python
# uses imports/function in A372401 print(list(islice(A372401gen(p=11), 7))) # Michael S. Branicky, Jun 05 2024
-
Python
from sympy import integer_log, prevprime def A372402(n): def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) return g(2310**n,11) # Chai Wah Wu, Sep 16 2024
Extensions
a(14)-a(18) from Michael S. Branicky, Jun 05 2024
More terms from David A. Corneth, Jun 05 2024
Comments