cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372440 Numbers k such that the least binary index of k plus the least prime index of k is even.

Original entry on oeis.org

4, 5, 11, 12, 16, 17, 20, 23, 25, 28, 31, 35, 36, 41, 44, 47, 48, 52, 55, 59, 60, 64, 65, 67, 68, 73, 76, 80, 83, 84, 85, 92, 95, 97, 100, 103, 108, 109, 112, 115, 116, 121, 124, 125, 127, 132, 137, 140, 143, 144, 145, 148, 149, 155, 156, 157, 164, 167, 172
Offset: 1

Views

Author

Gus Wiseman, May 06 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms (center), their binary indices (left), and their prime indices (right) begin:
          {3}   4  (1,1)
        {1,3}   5  (3)
      {1,2,4}  11  (5)
        {3,4}  12  (2,1,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,4,6}  41  (13)
      {3,4,6}  44  (5,1,1)
  {1,2,3,4,6}  47  (15)
        {5,6}  48  (2,1,1,1,1)
      {3,5,6}  52  (6,1,1)
  {1,2,3,5,6}  55  (5,3)
  {1,2,4,5,6}  59  (17)
    {3,4,5,6}  60  (3,2,1,1)
          {7}  64  (1,1,1,1,1,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
Positions of even terms in A372437.
The complement is 1 followed by A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
A003963 gives product of prime indices, binary A096111.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Min[bix[#]]+Min[prix[#]]]&]