A372591
Numbers whose binary weight (A000120) plus bigomega (A001222) is even.
Original entry on oeis.org
2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2} 2 (1)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{1,2,3,4} 15 (3,2)
{1,2,5} 19 (8)
{4,5} 24 (2,1,1,1)
{3,4,5} 28 (4,1,1)
{1,2,3,4,5} 31 (11)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{1,2,3,6} 39 (6,2)
{4,6} 40 (3,1,1,1)
{1,4,6} 41 (13)
{2,4,6} 42 (4,2,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A372588
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.
Original entry on oeis.org
2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2} 2 (1)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,2,3,4} 15 (3,2)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{1,3,5} 21 (4,2)
{4,5} 24 (2,1,1,1)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{4,6} 40 (3,1,1,1)
{1,4,6} 41 (13)
{3,4,6} 44 (5,1,1)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066208,
A160786,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372586
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{2} 2 (1)
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,2,3,4} 15 (3,2)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{3,6} 36 (2,2,1,1)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
{2,3,4,6} 46 (9,1)
{1,2,3,4,6} 47 (15)
{5,6} 48 (2,1,1,1,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]
A372589
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.
Original entry on oeis.org
3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,2,6} 35 (4,3)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
{1,2,3,6} 39 (6,2)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066207,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372590
Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.
Original entry on oeis.org
1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{3,4} 12 (2,1,1)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{2,5} 18 (2,2,1)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{1,3,4,5} 29 (10)
{2,3,4,5} 30 (3,2,1)
{1,2,6} 35 (4,3)
{2,3,6} 38 (8,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A372439
Numbers k such that the least binary index of k plus the least prime index of k is odd.
Original entry on oeis.org
2, 3, 6, 7, 8, 9, 10, 13, 14, 15, 18, 19, 21, 22, 24, 26, 27, 29, 30, 32, 33, 34, 37, 38, 39, 40, 42, 43, 45, 46, 49, 50, 51, 53, 54, 56, 57, 58, 61, 62, 63, 66, 69, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102
Offset: 1
The terms (center), their binary indices (left), and their prime indices (right) begin:
{2} 2 (1)
{1,2} 3 (2)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{2,4} 10 (3,1)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{1,2,3,4} 15 (3,2)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{1,3,5} 21 (4,2)
{2,3,5} 22 (5,1)
{4,5} 24 (2,1,1,1)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{1,3,4,5} 29 (10)
{2,3,4,5} 30 (3,2,1)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
The complement is 1 followed by
A372440.
A070939 gives length of binary expansion.
Cf.
A000720,
A061712,
A174090,
A243055,
A359495,
A372429,
A372430,
A372431,
A372432,
A372438,
A372471.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[Min[bix[#]]+Min[prix[#]]]&]
A372587
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.
Original entry on oeis.org
6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{4,5} 24 (2,1,1,1)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{1,2,6} 35 (4,3)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]
Showing 1-7 of 7 results.
Comments