cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A372453 a(n) = A372443(n) - A086893(1+A372447(n)).

Original entry on oeis.org

6, -12, 10, -6, -14, 22, -52, 36, 6, -76, 18, -58, 20, -38, -78, 54, -260, 104, -46, 38, 36, -58, 84, -22, 138, -134, -286, 254, -984, 58, 2, -1362, -336, -276, 92, -16, 8, 2, -18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 05 2024

Keywords

Comments

These are the differences obtained when the term of A086893 that has the same binary length as A372443(n) is subtracted from the latter. Here A372443(n) gives the n-th iterate of 27 with Reduced Collatz-function R, where R(n) = A000265(3*n+1).
Note that for all n >= 1, R(A086893(2n-1)) = 1, and R(A086893(2n)) = 5 (with R(5) = 1), so the first zero here, a(39) = 0 indicates that the iteration will soon have reached the terminal 1, and indeed, A372443(41) = 1.

Examples

			The term of A086893 that has same binary length as A372443(0) = 27 is 21 [as 21 = 10101_2 in binary, and 27 = 11011_2 in binary], therefore a(0) = 27-21 = 6.
The term of A086893 that has same binary length as A372443(1) = 41 is 53, therefore a(1) = 41-53 = -12.
		

Crossrefs

Programs

Formula

a(n) = A372443(n) - A086893(1+A000523(A372443(n))).

A372443 The n-th iterate of 27 with Reduced Collatz-function R, which gives the odd part of 3n+1.

Original entry on oeis.org

27, 41, 31, 47, 71, 107, 161, 121, 91, 137, 103, 155, 233, 175, 263, 395, 593, 445, 167, 251, 377, 283, 425, 319, 479, 719, 1079, 1619, 2429, 911, 1367, 2051, 3077, 577, 433, 325, 61, 23, 35, 53, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 01 2024

Keywords

Crossrefs

Column 14 of A372283, Row 13 of A256598 (but only up to the first 1).
Row 1 of A372560.
From term 47 to the first 1 same as A088593.
Sequences derived from this one or related to:
A372445 column index of a(n) in array A257852,
A372362 the 2-adic valuation of 1 + 3*a(n), equal to row index of a(n) in array A257852,
A372447 binary lengths minus 1,
A372446 a(n) xored with the term of A086893 having the same binary length,
A372453 a(n) minus the term of A086893 having the same binary length.

Programs

  • PARI
    R(n) = { n = 1+3*n; n>>valuation(n, 2); };
    A372443(n) = { my(x=27); while(n, x=R(x); n--); (x); };

Formula

a(0) = 27; for n > 0, a(n) = R(a(n-1)), where R(n) = (3*n+1)/2^A371093(n) = A000265(3*n+1).
For n > 0, a(n) = R(A372444(n-1)) = A000265(1+3*A372444(n-1)).

A372449 a(n) = A000523(A372444(n)); One less than the length of binary expansion of the n-th iterate of 27 with A371094.

Original entry on oeis.org

4, 7, 12, 23, 44, 84, 165, 326, 650, 1297, 2590, 5177, 10349, 20695, 41386, 82766, 165527, 331048, 662093, 1324181, 2648358, 5296712, 10593418, 21186832, 42373658, 84747311, 169494616, 338989224, 677978441, 1355956875, 2711913744, 5423827481, 10847654953, 21695309901, 43390619796, 86781239588, 173562479173, 347124958346
Offset: 0

Views

Author

Antti Karttunen, May 04 2024

Keywords

Crossrefs

Programs

Formula

a(n) = A000523(A372444(n)).
a(0) = A372447(0) = 4, and for n > 0, a(n) = A372447(n) + 2*A372448(n-1).

A372448 a(n) is the 2-adic valuation of 1 + 3*{the n-th iterate of 27 with A371094}.

Original entry on oeis.org

1, 4, 9, 19, 39, 79, 160, 322, 645, 1292, 2585, 5171, 10344, 20689, 41379, 82759, 165520, 331043, 662087, 1324175, 2648352, 5296705, 10593412, 21186825, 42373651, 84747303, 169494607, 338989215, 677978433, 1355956867, 2711913735, 5423827471, 10847654946, 21695309894, 43390619790, 86781239584, 173562479171, 347124958343
Offset: 0

Views

Author

Antti Karttunen, May 04 2024

Keywords

Crossrefs

Programs

Formula

a(n) = A371093(A372444(n)).
a(0) = 1, and for n > 0, a(n) = 2*a(n-1) + A371093(A372443(n)).

A372362 a(n) is the 2-adic valuation of 1 + 3*{the n-th iterate of 27 with Reduced Collatz-function R}.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 2, 2, 4, 3, 1, 1, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Antti Karttunen, May 06 2024

Keywords

Crossrefs

The first 41 terms form the row 13 of A351122.

Programs

Formula

a(n) = A371093(A372443(n)).
Showing 1-5 of 5 results.